	Reg. No.									
Question Paper Cod	e	1299	02							

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Second Semester

Mechanical Engineering

(Common to Mechanical and Automation Engineering)

20BSPH202 - PHYSICS OF MATERIALS

Regulations - 2020

Du	ration: 3 Hours	Max. Ma	rks: 1	00
	PART - A (MCQ) (20 × 1 = 20 Marks)	Marks	K – Level	со
1	Answer ALL Questions The one P-T-V combination at which solid, liquid and vapour are in equilibrium, is call			CO1
1.	(a) Critical point (b) Triple point (c) Saturation point (d) None of the above			001
2.	German silver is the alloy of	1	K1	CO1
	(a) Ag (b) Refine Ag (c) Ni, Zn and Cu (d) Fe-C			
3.	Cast iron has carbon in which form	1	K2	COI
	(a) Free Carbon (b) Graphite (c) Cementite (d) White carbon	1	V_{1}	<i>c</i> 01
4.	Which of the following is the hardest?	1	KI	<i>CO2</i>
5.	(a) Cementite (b) Ferrite (c) Pearlite (d) Martensite What is the magnitude of the eutectic temperature?	1	K1	<i>CO2</i>
5.	(a) 727° C (b) 768° C (c) 1146° C (d) 1495° C	-		
6.	Gamma iron has structure of	1	K2	<i>CO2</i>
	(a) BCC (b) FCC (c) HCP (d) BCT			
7.	Steel is a alloy.	1	K1	CO3
-	(a) Fe-C (b) Ag-Au (c) Mo-W (d) Cu-Ni			<i>co</i> 2
8.	Which property decreases the strain hardening?	1	K2	CO3
0	(a) Hardness (b) UTS (c) Ductility (d) Yield Strength Which material is with high elasticity?	1	K1	CO3
9.	(a) Rubber (b) Glass (c) Steel (d) Copper			
10.	In the ratio of the induced dipole moment to the electric field strength (p/E), the 'E' stan	nds 1	K1	<i>CO</i> 4
	for			
	(a) Electrical resistance (b) Electronic structure			
1.1	(c) Electric field strength (d) Electron cloud size	1	V_{1}	<i>CO</i> 4
11.	Paramagnetic material acts as a	1	K1	<i>CO4</i>
12	(a) Strong magnet (b) Weak magnet (c) Very strong magnet (d) None of the above What units are typically used to measure electronic polarizability?	1	K1	<i>CO4</i>
12.	(a) Meters per Volt (b) Cubic Meters per Volt			
	(c) Cubic Meters per Ampere (d) Picometers Squared per Volt			
13.	Ferromagnetic material exhibits	1	K1	<i>CO5</i>
	(a) Hysteresis (b) Magnetic curve (c) Zero magnetization (d) Opposite direction			~~~
14.	Which of the following material is a ferromagnetic material?	1	K1	<i>CO5</i>
15	(a) Iron (b) Nickel (c) Cobalt (d) All the above What principle underlies the operation of a magnetic levitation (MagLev) train	1	K1	CO5
15.	(a) Lorentz force (b) Faraday's law of Induction	1		005
	(c) Lenz's law (d) Ampere's circuital law			
16.	The energy required by a dielectric material to lose its insulating property is known as -	1	K2	CO5
	(a) dielectric mechanism (b) dielectric constant			
	(c) dielectric flux (d) dielectric strength			

1

17.	The reason for nanomaterials is superior than bulk materials (a) Low surface to volume ratio (b) degrees of freedom	1	K1	<i>CO6</i>
	(c) High surface to volume ratio (d) harmless			
18.	The equimolar Ni-Ti alloy, is known as from the following,	1	K1	<i>CO6</i>
	(a) Nitinol (b) Alcohol (c) Amalgam (d) None of the above			
19.	The quantum size effect the electronic properties in the nanomaterial	1	K1	<i>CO6</i>
	(a) Degrade (b) Enhance (c) No change (d) None of the above			
20.	What property of Ni-Ti alloys is exploited in deployable structures like antennas and	1	K1	<i>CO6</i>
	solar panels for satellites?			
	(a) Corrosion resistance (b) Shape Memory			
	(c) Biocompatibility (d) High Damping Capacity			
	PART - B $(10 \times 2 = 20 \text{ Marks})$			
21	Answer ALL Questions What is lever rule?	2	K1	CO1
	Define Hume – Rothery's rule.	2	K1	CO1
23.	State second fick's law of diffusion.	2	K1	CO2
24.	What are the phases present in iron-carbon phase diagram?	2	K1	<i>CO2</i>
25.	What is slip and twinning?	2	K1	СО3
26.	What is creep?	2	K1	CO3
27.	What is ferromagnetism?	2	K1	<i>CO</i> 4
28.	Differentiate between Soft and Hard Magnetic materials.	2	K2	<i>CO</i> 4
29.	Define glass transition temperature.	2	K1	CO5
30.	Give any two applications of superconductors.	2	K1	<i>CO6</i>
	PART - C ($6 \times 10 = 60$ Marks)			
31.	a) Explain isomorphism (Cu – Ni) phase diagram with its microstructure.	10	K2	CO1
51.	OR			
	b) Explain unary phase diagram of iron and explain different phases.	10	K2	CO1
22		10	K٦	<i>CO2</i>
32.	a) Explain TTT diagram for eutectoid steel.	10	Λ2	002

32.	a)	Explain 111 diagram for eutectoid steel.	10	Λ2	02
	b)	OR Explain the microstructural changes on hypo eutectoid and hypereutectoid steel.	10	K2	CO2
33.	a)	Explain fatigue fracture in detail and different stages involved.	10	K2	СО3
	b)	Discuss the use of Vicker's method in determining micro hardness of a material.	10	K2	CO3
34.	a)	Describe any two types of polarization. OR	10	K2	<i>CO4</i>
	b)	Explain the hysteresis behavior of ferromagnetic materials and discuss it based on domain theory.	10	K2	<i>CO4</i>
35.	a)	Explain Meissner effect, isotope effect and magnetic levitation.	10	K2	CO5
	b)	Describe the role of matrix material and reinforcement.	10	K2	CO5
36.	a)	Explain in detail about applications of nanophase materials. OR	10	K2	<i>CO6</i>

b) Explain the characteristics and applications of SMA. *10 K2 CO6*

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create