		Reg. No.									
	Question Paper Cod	e 1	1240	63							
	BE / B. Tech / M.Tech DEGREE	EXAMIN	AT	ION	S, N	O	V / D)EC	20	23	
	Second	Semester									
	Computer Science	and Eng	ine	ering	5						
(Common to Information Technology, Con	mputer Sc	eieno	ce an	d Ei	ngi	neeri	ing (AI	ML)	,
C	omputer Science and Engineering (IoT), G	Computer	Sci	ence	and	l Er	igine	erin	g ((Cybe	er
Se	curity), Artificial Intelligence and Data S	cience &	М.Т	Tech.	- C	om	pute	r Sci	ienc	ce ar	nd
	Engine	ering)									
	20BSPH203 - PHYSICS FOR	INFORM	AA]	ΓΙΟΝ	N SO	CIE	INC	E			
	(Regulatio	ons 2020)									
Dur	ation: 3 Hours						Ma	ax. N	Лar	ks: 1	100
	PART - A (10 × Answer ALI	2 = 20 M L Question	lark ns	ks)							
										M	arks,
1.	State any four postulates of the classical	free elec	tron	theo	orv c	of s	olids			K-Le 2,K	e vei, CO 1,CO1
2	What is periodic potential?				-) -			-		2,K.	1,CO1
<u> </u>	Bring out the differences between intrin	sic and ex	trin	sic s	emi	con	duct	ors.		2,K.	2,CO2
4.	How do you increase the conductivity o	f semicon	duc	tors?						2,K	2,CO2
5.	Write down the applications of the Hall	effect.								2,K.	1,CO3
6.	What is magnetic susceptibility?									2,K.	1,CO3
7.	What is superconductivity?	'hat is superconductivity?								2,K.	1,CO4
8.	The wavelength of light emission in an LED is 1.55 μ m. Calculate the band gap in eV?							e	2,K2,CO4		
9.	Relate the size of the material with its band gap energy.	optical ab	sor	otion	wa	vel	engtl	1 an	d	2,K2	2,CO5
10.	What is a quantum dot?									2,K2	2,CO5

PART - B (5 × 13 = 65 Marks)

Answer ALL Questions

11. a) Deduce mathematical expression for electrical conductivity and ^{13,K2,CO1} thermal conductivity of a conducting material and hence obtain Wiedemann-Franz law.

OR

- b) Derive an expression for the effective mass of an electron moving ^{13,K2,CO1} energy bands of a solid. Show how it varies with the wave vector.
- 12. a) Derive an expression for the carrier concentration of an intrinsic ^{13,K2,CO2} semiconductor.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12463

OR

- b) Obtain an expression for the carrier concentration of electrons in the *13,K2,CO2* conduction band of an n-type semiconductor.
- 13. a) Explain the construction and working of the Schottky diode and 13,K2,CO3 ohmic contact.

OR

- b) Discuss briefly about the classification of magnetic materials based ^{13,K2,CO3} on magnetic moment/spin alignment.
- 14. a) Explain in detail carrier generation and recombination in 13,K2,CO4 semiconductors.

OR

b) Explain briefly about the following phenomenon in superconductors.

(i) Meissner effect	<i>4,K2,CO4</i>
(ii) Effect of magnetic field	3,K2,CO4
(iii) Effect of current	3,K2,CO4
(iv) Josephson effect and its types	3,K2,CO4

15. a) Describe the principle, construction and working of solar cells. *13,K3,C05*

OR

b) Discuss principle, construction, working, advantages, drawbacks and ^{13,K3,CO5} applications of OLED.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Describe carbon nanotubes with types of structures, properties and 15,K2,CO6 applications.

OR

b) Discuss in detail about the principle, construction and working of a ^{15,K2,CO6} Single Electron Transistor (SET).