Reg. No.

Question Paper Code

Code 12993

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Second Semester

Computer Science and Engineering

(Common to Information Technology, Artificial Intelligence and Data Science, Computer Science and Engineering (AIML), Computer Science and Engineering (IoT) and M.Tech - Computer Science and Engineering)

20BSPH203 – PHYSICS FOR INFORMATION SCIENCE

Regulation-2020

	Duration: 3 Hours	Itogulation 2020	Max. M	larks:	100	
	$\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{T} = \mathbf{A} \left(\mathbf{M}\mathbf{C}\mathbf{O}\right) \left(20 \times 1 - 20 \mathbf{M}_{\text{order}}\right)$					
		wer ALL Questions		Marks	Level	СО
1.	Wiedemann-Franz law gives the rational			1	K1	<i>CO1</i>
	(a) Electrical conductivity and Ther					
	(b) Thermal conductivity and Electrical conductivity(c) Thermal conductivity and Electrical resistivity					
-	(d) Temperature and Pressure					<i></i>
2.	The properties of metals that cannot be explained from the free electron gas model			1	K1	<i>CO1</i>
	are:	(b) The march Complexities				
	•	(b) Thermal Conductivity.				
3	(c) Paramagnetic Susceptibility.			1	K2	CO1
5.	The topmost filled energy level at 0K is identified as: (a) Conduction band (b) Valance band				112	001
	(c) Fermi level	(d) Transmission level				
4.		cs, what is the maximum number of ele	ctrons	1	K1	CO2
	that can occupy one energy state?	,				
	(a) 2 (b) 1	(c) 4 (d) 3				
5.	5. Which of the following is NOT an example of a semiconductor material?				K1	CO2
	(a) Silicon (Si)	(b) Germanium (Ge)				
	(c) Gold (Au)	(d) Gallium Arsenide (GaAs)			Kl	~ ~ •
6.	6. Fermi energy level for intrinsic semiconductors lies					<i>CO2</i>
	(a) At middle of the band gap	(b) Close to conduction band				
7	(c) Close to valence band (d) None			1	Kl	CO2
/.	Fermi level for extrinsic semiconductor depends on (a) Donor element (b) Impurity concentration			1	K1	002
	(c) Temperature	(d) All				
8.		which one can have both $-ve$ and $+ve$	e Hall	1	K1	CO3
0.	coefficients:					
	(a)Metal	(b)Doped semiconductor				
	(c)Insulator	(d)Intrinsic semiconductor				
9.	The ratio of the intensity of magneti	zation M to the magnetic field H, is know	n as:	1	K1	СОЗ
	(a) Magnetic susceptibility	(b) Magnetic permeability.				
	(c) Magnetic field intensity.	(d) Magnetic flux.				~ ~ •
10.		s, the net magnetic moment is be zero		1	K1	CO3
	(a) Diamagnetic material	(b) Ferromagnetic materials				
11	(c) Antiferromagnetic materials	(d)Ferromagnetic materials		1	K1	<i>CO4</i>
11.	Superconductor have zero (a) Resistivity.	(b) Conductivity.		1	111	0.04
	(c) Electricity.	(d) All of the above.				
	(c) Licenterty.					

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12993

12. Metals can the light beams.	1	K1	<i>CO</i> 4
(a) Reflect. (b) Refract.			
(c) Diffract. (d) Transmit.			
13. The superconducting state is perfectly in nature.	1	K1	<i>CO</i> 4
(a) Diamagnetic (b) Paramagnetic (c) Ferromagnetic (d) Ferromagnetic			
14. Materials that transmit light with minimum absorption and reflection are known as	1	K2	CO4
(a) Transparent (b) Translucent (c) Opaque (d) All of the above.			
15. Solar cell works based on	1	K2	<i>CO5</i>
(a) Laser technology (b) Photo-conduction (c) Thermal emission (c) Tyndall effect			
16. What does OLED stand for?	1	K1	CO5
(a) Orange Light Emitting Diode (b) Organic Light Emitting Diode			
(c). Optically Linked Emitting Diode (d) Operational Light Emitting Device	1	<i>V</i> 1	604
17. In case of quantum confinement effect, wave function is in nature.	1	K1	<i>CO6</i>
(a) Longitudinal wave (b) Transverse wave			
(c) Travelling wave (d) Standing wave	1	va	<i>CO</i> (
18. Quantum dots fall under nano-material	1	K2	<i>CO6</i>
(a) One dimensional (b) Two dimensional			
(c) Zero dimensional (d) Three dimensional	,	K1	CO6
19. A material is said to be nano-material if	1	ΚI	000
(a) the particles have all three dimensions in nano meter range			
(b) the particles have only two dimensions in nano meter range			
(c) at least one dimension is below 100 nm			
(d) none of these	1	K1	<i>CO</i> 6
20. Large scale production of CNT can be achieved	1	ΛI	000
(a) by arc discharge method			
(b) by laser vaporization method			
(c) in tubular furnace in presence of metal catalyst and a mixture of methane, H_2			
gases			
(d) all of these			

PART - B $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions 21. Give the postulates of classical free electron theory.	2	K1	COI
22. Compare free electron approximation and tight binding approximation.			<i>CO1</i>
23. Summarize the properties of semiconductor.			<i>CO2</i>
24. Differentiate between direct and indirect band gap semiconductors.	2	K1	<i>CO2</i>
25. Show the magnetic dipole alignment in ferro, anti-ferro and ferri-magnetism.			CO3
26. What is Giant Magneto-resistance?	2	K1	CO3
27. Distinguish between radiative and non-radiative transition.	2	K2	<i>CO</i> 4
28. Mention the merits of optical data storage.	2	K1	<i>CO</i> 5
29. State Coulombblockade effect.	2	K1	<i>CO6</i>
30. Classify quantum confined structure.	2	K2	<i>CO6</i>

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions 31. a) Derive an expression for thermal conductivity of electrons in metal. **OR**

b) Write an expression by deriving the effective mass of electron and discuss the 10 K2 CO1 concept of hole from it.

32.	a)	Draw energy level diagram for i) intrinsic semiconductor, ii) n-type semiconductor. OR	10	К3	<i>CO2</i>
	b)	Derive an expression for the carrier concentration of intrinsic semiconductor.	10	K3	CO2
33.	a)	Discuss in detail about magnetic materials classifications with its behavior. OR	10	K2	СО3
	b)	Illustrate the hysteresis curve based on the domain concept.	10	K2	СО3
34.	a)	Sketch the band gap of absorption and emission of light on metal, semiconductor and insulator.	10	K3	<i>CO4</i>
		OR			
	b) i) Explain briefly about carrier recombination in semiconductors.	7	K3	<i>CO</i> 4
	ii)	Write short notes on Magnetic levitation.	3	K3	<i>CO</i> 4
35.	a)	Describe the principle, construction and working of solar cells. OR	10	K2	CO5
	b)	Discuss principle, construction, working, advantages, drawbacks and applications of OLED.	10	K2	CO5
36.	a)	Demonstrate the construction and working of single electron transistor. OR	10	K2	<i>CO</i> 6
	b)	Describe carbon nano-tubes with types of structures, properties and applications.	10	К2	<i>CO6</i>