r	 	 _		 	 	_	
Reg. No.							

Question Paper Code 12466

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Second Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20BSPH206 - PHYSICS FOR INSTRUMENTATION ENGINEERING

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

		Marks, K-Level, CO
1.	Mention the drawbacks of classical free electron theory of metals.	2,K1,CO1
2.	State Wiedemann-Franz law.	2,K1,CO1
3.	What are the properties of semiconductors?	2,K1,CO2
4.	Given an extrinsic semiconductor, how will you find whether it is n-type or p-type?	2,K2,CO2
5.	Define critical temperature.	2,K1,CO3
6.	What is meant by isotope effect?	2,K1,CO3
7.	Classify magnetic materials based on their magnetic moments.	2,K2,CO4
8.	Differentiate soft and hard magnetic materials.	2,K2,CO4
9.	What are liquid crystal and its types?	2,K1,CO5
10.	What are 0D, 1D, 2D and 3D nanomaterials with an example?	2,K1,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Define electrical conductivity? Derive an expression for electrical 13,K2,CO1 conductivity of a metal by using classical free electron theory.

OR

- b) Derive an expression for the density of states and based on that 13,K2,CO1 calculate the carrier concentration in metals.
- 12. a) Derive an expression for density of electrons in the conduction band in 13,K2,CO2 an intrinsic semiconductor.

OR

b) What is Hall effect? Obtain an expression for the Hall coefficient for a 13,K2,CO2 semiconductor with neat diagrams.

- 13. a) (i) List out the differences between Type-I and Type-II 10,K2,CO3 superconductors.
 - (ii) Prove superconductors exhibit diamagnetism.

3,K2,CO3

OR

- b) Discuss the structure, properties and applications of high temperature 13,K2,CO3 superconductors with special reference to 1-2-3 superconductors.
- 14. a) Draw a B-H curve for a ferro magnetic material and identify retentive 13,K2,CO4 and coercive fields on the curve.

OR

- b) Explain the structure of ferrites, properties and its applications. 13,K2,CO4
- 15. a) List out different types of polarization mechanisms and also derive 13,K2,CO5 expressions for electronic and ionic polarization mechanisms in dielectric material.

OR

b) What is meant by local field in a dielectric? Explain how it is ^{13,K2,CO5} calculated for a cubic structure and deduce the Clausius - Mosotti relation.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) What are metallic glasses? Describe the preparation and properties and 15,K2,CO6 applications of metallic glasses.

OR

b) Explain the construction and working of liquid crystal displays with 15,K2,CO6 neat diagram.