Reg. No.								

Question Paper Code

12995

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Second Semester

Electronics and Instrumentation Engineering

(Common to Instrumentation and Control Engineering)

20BSPH206 - PHYSICS FOR INSTRUMENTATION ENGINEERING

Regulations - 2020

Du	Max. Marks: 100				
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$	Marks	<i>K</i> –	co	
	Answer ALL Questions	Marks			
1.	The unit of electrical conductivity is	1	K1	CO1	
	(a) mho/metre (b) ohm/metre (c) ohm/m ² (d) mho/m ²				
2.	The ratio of the thermal conductivity to the electrical conductivity is directly proportional	1 1	<i>K1</i>	CO1	
	to the absolute temperature is called				
	(a) Weber Fechner Law (b) Weiss's law				
	(c) Wiedemann-Franz law (d) Ohm's law				
3.	Energy of the particle in 1 Dimension box is	1	<i>K1</i>	CO1	
	(a) $E=n^2h^2/8ma^2$ (b) $E=n^2h^2/ma^2$ (c) $E=2n^2h^2/8ma^2$ (d) $E=8n^2h^2/2ma^2$				
4.	Which among the following is the most commonly used semiconductor?	1	K1	CO2	
	(a) Silicon (b) Carbon (c) Germanium (d) Sulphur				
5.	What is the random motion of free electrons and holes due to thermal agitation called?	1	K1	CO2	
	(a) Pressure (b) Diffusion (c) Ionization (d) None of the above				
6.	Hall coefficient is n-type semiconductor is given by	1	K2	CO2	
	(a) $RH = -neJ$ (b) $RH = 1/ne$ (c) $RH = -1/Jne$ (d) $RH = -1/ne$				
7.	In superconductivity, the conductivity of a material becomes	1	<i>K1</i>	CO3	
	(a) Zero (b) Finite (c) Infinite (d) None of the above				
8.	The superconducting state is perfectly in nature.	1	K1	CO3	
	(a) Diamagnetic (b) Paramagnetic (c) Ferromagnetic (d) Ferromagnetic				
9.	The core and coil of a cryotron are prepared with superconducting material.	1	K2	CO3	
	(a) Same (b) Different (c) Both a & b (d) None			<i>aa.</i>	
10.	The magnetic dipole moment of a magnetic dipole is given by the formula	1	<i>K1</i>	CO4	
	(a) $M = m \times 2I$ (b) $M = m + 2I$ (c) $M = m - 2I$ (d) $M = m / 2I$		77.0	GO 4	
11.	In which of the following materials, susceptibility increases and then decreases with	1	K2	CO4	
	increase in temperature,				
	(a) Ferromagnetic material (b) Antiferromagnetic material				
10	(c) Paramagnetic material (d) Diamagnetic material	1	W2	COL	
12.	The core of a transformer for microwave frequency should be made of	1	K2	CO4	
1.0	(a) Ferrites (b) Iron (c) silicon (d)silicon carbide	1	V I	CO5	
13.	Dielectric materials are basically	1	<i>K1</i>	CO5	
1.4	(a) Insulators (b) Semiconductors (c) Superconductor (d) conductors	1	V I	CO5	
14.	The process of breakdown is accelerated by the presence of	1	ΚI	COS	
1.5	(a) Impurity (b) Conduction (c) Humidity (d) Magnetic field The forest transfer of relativistics are Floridation Polarization Polarization Constants.	1	_{V2}	CO5	
15.	The four types of polarization are Electronic Polarization, Ionic Polarization, Space-	1	K2	COS	
	charge polarization and(b) Electric polarization				
	(a) Magnetic polarization (b) Electric polarisation				
16	(c) Orientation polarization (d) Potential polarization The piggoalectric meterials used for converting energy are called as	1	<i>K1</i>	CO5	
10.	The piezoelectric materials used for converting energy are called as	1	11.1	203	
17	(a)Transition Devices (b) Converter (c) Dielectric (d) Transducer The entired preparties of liquid envetels depend on the direction of	1	<i>K1</i>	CO6	
1/.	The optical properties of liquid crystals depend on the direction of	1	11.1	200	
	(a) All (b) Solid (c) Light (d) Water				
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		129	995	

18.	(a) By	are metallic glasses formed? v increasing the rate of heating (b) By increasing the rate of cooling	1	K1	CO6
19.	(c) By melting it (d) By rapidly heating and then cooling slowly What is the building block of carbon nanotubes?				
20.	(a) Mini tubes (b) Lattice (c) Unit Cell (d) Graphene 0. A nanowire is a (a) 1-D material (b) 3-D material (c) 2-D material (d) 0-D material				
	(u) 1	PART - B ($10 \times 2 = 20$ Marks)			
		Answer ALL Questions			
21.	Obtai	n the microscopic form of ohm's law.	2	K2	CO1
		e Fermi Distribution Function.	2	<i>K1</i>	CO1
23.	Giver	an extrinsic semiconductor, how will you find whether it is n-type or p-type?	2	K2	CO2
		in how n-type semiconductors are formed.	2	K2	CO2
	_	is superconductivity?	2	K1	CO3
		e critical temperature.	2	K1	CO3
		are magnetic domains?	2	K1	CO4
		as a relative permeability of 5000. Calculate its magnetic susceptibility.		K2	CO4
			2 2	K1	CO5
		e polarization in dielectrics.	2	K1 K1	CO6
30.	wnat	are the types of metallic glasses?	2	ΚI	000
		PART - C ($6 \times 10 = 60 \text{ Marks}$) Answer ALL Questions			
31.	a)	Deduce mathematical expression for thermal conductivity of a conducting material.	10	K2	CO1
	b)	OR Derive an expression for the effective mass of an electron moving energy bands of a solid.	10	K2	CO1
32.	a)	Derive an expression for density of holes in valence band for an intrinsic Semiconductor.	10	K2	CO2
		OR			
	b)	Derive an expression for the Hall voltage in terms of Hall coefficient for an n-type semiconductor.	10	K2	CO2
33.	a)	Explain briefly about the following phenomenon in superconductors. (i) Effect of current (ii) Josephson effect and its types	10	K2	CO3
	b)	OR Write a short note on high temperature -123 superconductors. Also discuss about their characteristics, preparation method and crystal structure.	10	K2	CO3
34.	a)	Bring out the differences between soft and hard magnetic materials. OR	10	K2	CO4
	b)	Explain the dia, para and ferromagnetic materials based on magnetic moment/spin alignment.	10	K2	CO4
35.	a)	Obtain an expression for internal field expression using Lorentz method. OR	10	K2	CO5
	b)	Explain how to determine the dielectric constant and dielectric loss of a solid using Schering bridge.	10	K2	CO5
36.	a)	Explain the theory and working of LCD. OR	10	K2	CO6
	b)	Explain the properties and applications of nanomaterials.	10	K2	CO6