	Reg. No.			
	Question Paper Code 13285			
	BE / B Tech - DEGREE EXAMINATIONS NOV / DEC 2024			
	Third Semester			
	Computer Science and Business Systems			
	20CBPC301 - FORMAL LANGUAGE AND AUTOMATA THEORY			
	Regulations - 2020			
D	uration: 3 Hours Max	Mai	rks• 1	00
D	$\mathbf{D}\mathbf{A}\mathbf{D}\mathbf{T} = \mathbf{A} \left(\mathbf{MCO}\right) \left(20 \times 1 - 20 \mathbf{Morbs}\right)$. 1 v1 ai	K5. 1	00
	Answer ALL Ouestions	Marks	K – Level	CO
1.	What is the symbol for Empty string?	1	Kl	COI
1.	(a) ε (b) Φ (c) Σ (d) σ			
2.	"CFG" stands for	1	Kl	COI
	(a) Context Free Graph (b) Context Free Grammar			
	(c) Context Finite Graph (d) Context Finite Grammar			
3.	Which of the following is true?	1	K1	<i>CO1</i>
	(a) Every subset of a regular set is regular			
	(b) Every finite subset of non-regular set is regular			
	(c) The union of two non-regular set is not regular			
4	(d) Infinite union of finite set is regular Describes can be represented as:	1	K I	COL
4.	Regular Expression R and the language it describes can be represented as: (a) $\mathbf{P}_{i} \mathbf{P}_{i}$ (b) $\mathbf{L}_{i} (\mathbf{P}) \mathbf{P}_{i} \mathbf{L}_{i}$ (c) $\mathbf{P}_{i} \mathbf{L}_{i} (\mathbf{P})$ (d) All of the mentioned	1	K1	001
5	(a) K, K(L) (b) L(K), K(L) (c) K, L(K) (d) All of the mentioned Complete the Tuples ($\Omega \Sigma$ as F	1	K1	C02
5.	(a) δ (b) σ (c) ∇ (d) None of the above	-		002
6	What does the language of a Deterministic Finite Automaton (DFA) represent?	1	K1	CO2
0.	(a) Set of all possible inputs (b) Set of accepted strings			
	(c) Set of transitions (d) Set of initial states			
7.	The set of strings that a DFA recognizes is known as the	1	K1	<i>CO2</i>
	(a) Input alphabet (b) Transition set (c) Accepted language (d) Final state set			
8.	Complement of a DFA can be obtained by	1	K1	CO2
	(a) making starting state as final state (b) no trival method			
	(c) making final states non-final and non-final to final (d) make final as a starting state	_		
9.	The language accepted by Push down Automaton:	1	KI	<i>CO3</i>
	(a) Recursive Language (b) Context free language			
10	(c) Linearly Bounded language (d) All of the mentioned	1	K I	<i>C</i> 03
10.	what is the pumping length of string of length X ?	1	K1	005
11	$(d) X^{+1}$ $(b) X$ $(c) X^{-1}$ $(d) X^{2}$ Which of the following does not obey numping lemma for context free languages?	1	K1	CO3
11.	(a) Finite languages (b) Context free languages			
	(c) Unrestricted languages (d) None of the mentioned			
12.	Context free languages are not closed under:	1	Kl	CO3
	(a) Intersection (b) Intersection with Regular Language			
	(c) Complement (d) All of the mentioned			
13.	Which type of languages can be recognized by computational models equivalent to Turing	1	Kl	<i>CO</i> 4
	machines?			
	(a) Regular languages (b) Context-free languages			
14	(c) Recursively enumerable languages (d) Non-context-sensitive languages	1	VI	CO^{A}
14.	(a) Parallalism (b) Pandomization (c) Determinism (d) Paguraian	1	Λ1	004
	(a) randomization (c) Deterministin (d) Recursion			

15.	Which of the following statements about nondeterministic Turing machines is true?	1	Kl	<i>CO</i> 4
	(a) They always halt within a finite time			
	(b) They always produce deterministic output			
	(c) They are equivalent to finite automata			
	(d) They can solve NP-complete problems			
16.	Why Turing machine is very powerful than Finite automata?	1	Kl	<i>CO</i> 4
	(a) Turing machine head movement is continued to one direction.			
	(b) Turing machine head moment is in both directions			
	(c) Turing machine has capability to remember arbitrary long sequence of input string.			
	(d) All of the mentioned			
17.	What does it mean for a problem to be undecidable?	1	K1	CO5
	(a) It can be solved with a finite amount of resources			
	(b) It has only one possible solution			
	(c) It has no solution within a specific framework			
	(d) It has a unique solution that can be found in polynomial time			
18.	Halting problem is an example for	1	K1	<i>CO5</i>
	(a) decidable problem (b) undecidable problem			
	(c) complete problem (d) trackable problem			
19.	The concept of is used to denote a class of decision problems that are at least	1	K1	<i>CO5</i>
	as hard as the hardest problems in the complexity class NP.			
	(a) P (b) PSPACE (c) NP-complete (d) NP-hard			
20.	Diagonalization can be useful in	1	K1	<i>CO5</i>
	(a) To find a non-recursively enumerable language			
	(b) To prove undecidability of halting problem			
	(c) To find a non-recursively enumerable language & also proves undecidability of halting			
	problem			

(d) None of the mentioned

PART - B (10 × 2 = 20 Marks)

Answer ALL Questions

21.	Define Finite Automata.	2	Kl	<i>CO1</i>
22.	List the operators of Regular Expressions.	2	Kl	C01
23.	Compare NFA with DFA.	2	K2	<i>CO2</i>
24.		2	K2	<i>CO2</i>

	0 0,1			
	Show the transition table for the given diagram.			
25.	When do you say a grammar is ambiguous?	2	Kl	СО3
26.	List out the rules to convert CFG to GNF.	2	K1	CO3
27.	Show Turing machines as enumerators.	2	K2	<i>CO4</i>
28.	What are the applications of Turing Machine?	2	Kl	<i>CO4</i>
29.	Define Rice theorem.	2	Kl	C05
30.	What is universal Language Lu?	2	Kl	C05

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31.	a)	Explain in detail about Chomsky Hierarchy Model.	10	K2	C01
		OR			
	b)	Summarize productions and derivations in detail.	10	K2	<i>CO1</i>

- OR
- b) Solve the language $A = \{a^n b^n | n \ge 0\}$ using Pumping Lemma and prove that ¹⁰ K³ CO2 language A is not regular.

33.	a)	Show the PDA for language $L = \{wcw^R w = \{0, 1\}^*\}$ where w^R is the reverse of w.	10	K2	СО3
		OR			
	b)	Explain the working of Linear Bounded Automata with example.	10	K2	СО3
34.	a)	Construct a Turing Machine to accept the language $L=\{a^nb^n/n>1\}$. Draw the transition diagram. Also specify the instantaneous description to trace the string aabb.	10	K3	CO4
	b)	Develop a Turing Machine which recognizes the language $L=01*0$. Draw Turing Machine, Transition steps and Tape sequence.	10	K3	<i>CO</i> 4
35.	a)	Illustrate undecidability of PCP in detail.	10	K2	C05
	1-)	UN Emplois in detail the set Heimenel Texture Marking	10	K)	C05
	D)	Explain in detail about Universal Turing Machine.	10	Λ2	005
36.	a)	Rephrase the following grammar to Greibach Normal Form $S \rightarrow ABA \mid AB \mid BA \mid AA \mid B$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$	10	K2	СО3
		OR			
	b)	Describe how you remove ambiguity in Grammar. Explain with example.	10	K2	СО3

3