Reg. No.												
----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12384

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Third Semester

Computer Science and Business Systems 20CBPC301 - FORMAL LANGUAGE AND AUTOMATA THEORY

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART - A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Define Grammars.	Marks, K-Level, CO 2,K2,CO1
2.	Find and write the regular expression for the production S→aS, S→a.	2,K2,CO1
3.	Compare NFA with DFA.	2,K3,CO2
4.	Construct DFA with the input symbols {0, 1} in which it accepts all string ending with 00.	2,K3,CO2
5.	List out the applications of Context Free Grammar.	2,K2,CO3
6.	Find the language L(G) of the grammar S->aSb aAb, A->bAa ba.	2,K3,CO3
7.	Give the formal definition of Turing Machine.	2,K2,CO4
8.	Construct a Turing Machine which accepts the string W= aba over the input symbol {a,b}.	2,K3,CO4
9.	Define Rice's theorem.	2,K1,CO5
10.	State Universal Language Lu.	2,K1,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Explain in detail about Chomsky Hierarchy Model. 13,K2,CO1

OR

b) Briefly Discuss about Productions and Derivations. 13,K2,CO1

12. a) Construct DFA equivalent to the NFA M=($\{p, q, r, s\}, \{0,1\}, \delta, p, \{q^{13,K3,CO2}, s\}$), where T(transition function) is defined as follows,

State/input symbol	0	1
→p	{q,s}	{q}
*q	{r}	$\{q, r\}$
r	{s}	{p}
*s	-	{p}

OR

	b)	(i) Obtain a DFA to accept strings of a's and b's having even number of a's and b's.	7,K2,CO2			
		(ii) Distinguish DPDA and NDPDA.	6,K2,CO2			
13.	a)	(i) Reduce the following grammar into Chomsky Normal Form S->aB ASB A->B S B->b ϵ	6,K3,CO3			
		(ii) Consider the following productions S ->aB bA A->aS bAA a B->bS aBB b. For the string W=aaabbabbba, Draw a derivation tree and find Leftmost/Rightmost Derivation.	7,K3,CO3			
		OR				
	b)	(i) Consider the following grammar S ->aAS a A->SbA SS ba	7,K3,CO3			
		Find leftmost Derivation and draw a derivation tree for the string				
		W=aabbaa. (ii) Find a Graibach normal Form to the following Grammer	6,K3,CO3			
		(ii) Find a Greibach normal Form to the following Grammar S->CA	0,113,003			
		A->a				
		C->aB b				
14.	a)	Prepare a Turing Machine which recognizes the language L= 01*0. Draw Turing Machine, Transition steps and Tape sequence. OR	13,K3,CO4			
	b)	Write short notes on				
		(i) Two way infinite tape TM.	7,K2,CO4			
		(ii) Multiple Tracks Turing Machine.	6,K2,CO4			
15.	a)	Briefly discuss about Universal Turing machine. OR	13,K2,CO5			
	b)	Explain about NP complete and NP hard problems.	13,K2,CO5			
PART - C $(1 \times 15 = 15 \text{ Marks})$						
1.6	۵)	· · · · · · · · · · · · · · · · · · ·	8,K3,CO1			
16.	a)	(i) Conversion from Regular expression to finite automata RE=(a b)*abb.	0,13,001			
		(ii) Minimize the above DFA.	7,K3,CO1			
		OR				
	b)	Explain in details about steps to converting NFA into DFA with an example.	15,K2,CO1			