		Reg. No	Reg. No.									
					II		1 1	1 1				
	Question Paper Co	Question Paper Code13311										
	B.E. / B.Tech DEGREE EX	KAMINA	ΠΟΙ	NS, N	JOV	/ DE	C 2	024				
	Third	d Semeste	r									
	Computer Science	and Bus	iness	Syst	ems							
	20CBPC302 - COMPUTER ORGA			-		CHI	ТЕС	CTU	RE			
	Regulat	tions - 202	20									
Du	ration: 3 Hours								Max	. Ma	rks: 1	.00
	PART - A (MCQ)	$(20 \times 1 =$	20 N	larks	5)						K	
	Answer AL									Marks	K – Level	CO
1.	The interconnection between arithmetic logic un	-		ster i	s cal	led				1	K1	<i>CO1</i>
	(a) process route (b) information trail (c)		-			d) da	-					
2.	Which of the following register is used in the co	ontrol uni	t of tl	he Cl	PU to	o indi	icate	the	next	1	Kl	<i>CO1</i>
	instruction which is to be executed?		• ,		< 1) A		1					
2	(a) Program counter (b) Instruction decoder ((c) Index	regist	er	(d) A	ccun	nula	tor		1	K1	C01
3.	The length of a register is called (a) register limit (b) register size	(c) word	ize		(d)	word	lim	it		1		001
4.	What is the primary difference between RISC and	. ,)	(u)	word		11		1	Kl	<i>CO2</i>
	(a) CISC uses fixed-length instructions		01101									
	(b) RISC instructions are typically longer											
	(c) CISC has a smaller set of instructions											
	(d) RISC uses more complex instruction formate	S										
5.	The decoded instruction is stored in									1	Kl	<i>CO2</i>
	(a) memory data register (MDR)	(b) reg			• ,							
6	(c) program counter (PC) What does ISA stand for in computer organizati	(d) ins			-	er (IR	.)			1	K1	<i>CO2</i>
6.	What does ISA stand for in computer organizati(a) Integrated software application(b) Integrated software application	nternal sy				ire				1		002
		instruction										
7.	When rounding a floating-point number to a low						e dis	card	ed?	1	K1	CO3
	(a) Leading digits (b) Trailing digits (c) Inte	-		Exp	-							
8.	When performing floating-point addition, wh	ich step	step typically involves aligning the				g the	1	K1	CO3		
	exponents of the two operands?			_								
0	(a) Normalization (b) Exponentiation (c) Fra					n adj	ustm	lent		1	VI	CO3
9.	In floating-point arithmetic, what does the term (a) The exponent (b) The sign bit (c) The frac		-			and the	n or			1	K1	005
10	A hardwired control unit uses logic to gener	-						נוס פ	rrent	1	K1	<i>CO4</i>
10.	instruction being executed.		51 512	Silais	Uus		I UIN	, cu	nom			
	(a) microcode (b) combinational (c) sequer	ntial (d)	asse	mbly	lang	guage	;					
11.	What is the primary purpose of the x86 EFLAG			2		0				1	K1	<i>CO</i> 4
		ntrolling										
		oring the	result	t of a	rithn	netic	oper	atio	ns	-		<i></i>
12.	What is the Pipeline stall called?	\ T 1	1.	. 1	1 /			. 11		1	Kl	<i>CO</i> 4
12) Load us	e data	a stal	1 (d) Da	ata s	tall		1	K I	CO5
15.	What does DMA stand for in computer architect (a) Direct Memory Access (b)	b) Dynam	ic Me	emor	v Ac	Cess				1		005
	•	d) Data M			•							
14.	Which transfer mechanism interrupts the CPU of	,	0							1	K1	CO5
	(a) Program Controlled (b) Interrupt Drive	•	DMA			(d) P	ollec	l				
15.	Which of the following is an example of an input									1	<i>K1</i>	CO5
	(a) Printer (b) Monitor (c) Keyboa	ard		(d) S	peak	ter						

13311

16.	What does USB stand for?	1	K1	CO5			
	(a) Universal Serial Bus (b) Unified Serial Bus						
17	(c) Universal Signal Bus (d) Unified Signal Bus	1	K1	C06			
17.	In memory interleaving, the memory addresses are divided into: (a) Multiple banks (b) Multiple caches (c) Multiple registers (d) Multiple processors	1	K1	000			
18.	What is the trade-off between cache size and block size?	1	K1	<i>CO6</i>			
	(a) Larger block size decreases hit rate						
	(b) Larger block size increases cache misses						
	(c) Larger cache size increases hit rate but also cost						
10	(d) Larger cache size decreases power consumption Which replacement algorithm replaces the least recently used block in cache?	1	K1	C06			
19.	(a) Random replacement (b) First-in-first-out (FIFO)	-		000			
	(c) Least recently used (LRU) (d) Least frequently used (LFU)						
20.	The process of replacing an existing block in cache with a new one is called	1	Kl	<i>CO6</i>			
	(a) Cache allocation (b) Cache replacement (c) Cache mapping (d) Cache shifting						
	DADT B $(10 \times 2 - 20 \text{ Morks})$						
PART - B $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions							
21.	What is Addressing mode?	2	Kl	COI			
22.	Define Boolean Logic.	2	Kl	CO1			
23.	List the names of the registers.	2	K1	<i>CO</i> 2			
24.	Define instruction set Architecture.	2	K1	<i>CO</i> 2			
25.	What is the principle of booth multiplication?	2	Kl	CO3			
26.	List out the major categories of parallel multiplier implementation.	2	Kl	CO3			
27.	What is Cache Coherence?	2	Kl	<i>CO</i> 4			
28.	What is meant by hardwired control?	2	Kl	<i>CO</i> 4			

29. Define PROMs.30. Compare cache size and block size.

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31.	a)	Explain the Instruction Execution Cycle, detailing each step involved in executing an instruction.	10	K2	<i>CO1</i>
		OR			
	b)	Illustrate various Addressing Modes with relevant examples to each mode.	10	K2	C01
32.	a)	Summarize the process of instruction interpretation in a computer system. What factors influence how instructions are executed? OR	10	К2	<i>CO2</i>
	b)	Compare and contrast Complex Instruction Set Computing (CISC) and Reduced Instruction Set Computing (RISC) architectures.	10	К2	CO2
33.	a)	Explain Fixed and Floating Point representation with suitable examples. OR	10	K2	CO3
	b)	Explain the principle of Shift and Add Multiplication with suitable examples.	10	K2	CO3

2

2

K1 CO5

K2 CO6

34.	a)	Explain Flynn's classification of computer architectures.	10	K2	<i>CO</i> 4			
		OR						
	b)	Show a flowchart that outlines the instruction fetch-decode-execute cycle in a pipelined CPU.	10	К2	<i>CO</i> 4			
35.	a)	Illustrate Peripheral devices with examples.	10	K2	C05			
	OR							
	b)	Explain the key characteristics of SCSI (Small Computer System Interface) and give the advantages and disadvantages.	10	К2	CO5			
36.	a)	Explain in detail about Cache memory and its principles.	10	K2	C06			
	OR							
	b)	Explain the concept of hierarchical memory organization.	10	K2	<i>C06</i>			