Reg. No.

Question Paper Code 13046

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fourth Semester

Computer Science and Business Systems 20CBPC403 - OPERATING SYSTEMS

Regulations - 2020

Duration: 3 Hours			Max. Marks: 100			
PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$				GO		
	Answer ALL Questions	Marks	Level	co		
1.	What is the maximum length of the filename in DOS?	1	K1	CO1		
	(a) 4 (b) 5 (c) 8 (d) 1					
2.	When were MS windows operating systems proposed?	1	K1	CO1		
	(a) 1994 (b) 1990 (c) 1992 (d) 1985					
3.	When does page fault occur?	1	K1	CO1		
	(a) The page is present in memory. (b) The deadlock occurs.					
	(c) The page does not present in memory. (d) The buffering occurs.					
4.	BIOS is used by	1	K1	CO1		
	(a) operating system (b) compiler (c) interpreter (d) application software					
5.	Which of the following scheduling algorithm is non preemptive	alling algorithm is non preemptive 1 K1 CO.				
	(a) Shortest-Job-First Scheduling (b) First-Come, First-Served Scheduling					
	(c) Priority Scheduling (d) Round-Robin Scheduling					
6.	Which of the following scheduling algorithm associates with each process the length	of 1	K1	CO2		
	the process's next CPU burst					
	(a) Shortest-Job-First Scheduling (b) First-Come, First-Served Scheduling					
	(c) Priority Scheduling (d) Round-Robin Scheduling					
7.	Which of the following scheduling method would be the appropriate shortest-next CP	U- 1	K1	CO2		
	burst algorithm?					
	(a) Round-Robin Scheduling (b) First-Come, First-Served Scheduling					
	(c) Priority Scheduling (d) Shortest-Job-First Scheduling					
8.	Which of the following scheduling algorithm is used frequently in long-term scheduling	owing scheduling algorithm is used frequently in long-term scheduling 1 K1 Co				
	(a) Shortest-Job-First Scheduling (b) First-Come, First-Served Scheduling					
_	(c) Priority Scheduling (d) Round-Robin Scheduling	1	<i>K1</i>	~~.		
9.	9. Thread shares with other threads belonging to the same process its			CO3		
	(a) thread ID (b) program counter					
1.0	(c) register set and a stack (d) code section and data section	1 1	<i>K1</i>	CO3		
10.	10. Which of the following Multithreading model, the entire process will block if a thread					
	makes a blocking system call.					
	(a) Many to One model (b) One to Many model					
11	(c) Many to Many model (d) One to One model	1	νı	CO3		
11.	A process can be	1	ΚI	COS		
	(a) single threaded (b) multithreaded (c) had single threaded (d) none of the above					
10	(c) both single threaded and multithreaded (d) none of the above	1	V 1	CO3		
12.	User threads	1	ΚI	COS		
	(a) are supported above the kernel and are managed without kernel support					
	(b) are supported below the kernel and are managed without kernel support					
	(c) are supported above the kernel and are managed with kernel support (d) None of the above					
	(a) Notic of the above					

13.	For which of the below allocation is managed by Kernel and use of the allocated memory	1	K1	CO4
	is managed by run time library? (a) Caches (b) RAM (c) Disk (d) All of the above			
14.	The effective memory access time depends on a	1	<i>K1</i>	CO4
	(a) Miss Ratio (b) Hit Ratio (c) Bit Ratio (d) Byte Ratio			
15.	```	1	K1	CO4
	achieved by part of memory hierarchy called			
1.0	(a) Caches (b) Disk (c) RAM (d) Virtual memory	1	1/1	<i>CO</i> 1
16.	Buring operation, a process creates data structures within the memory another and	1	K1	CO4
	it by the kernel, This function is actually performed by the (a) Run time library (b) dynamic library (c) static library (d) load time library			
17.	In which of the following a sequence of characters organized into lines (and possibly	1	<i>K1</i>	CO5
17.	pages)?			
	(a) Text file (b) Source file (c) Executable file (d) None of the above.			
18.	which of the following the attitude is the anique tag, assumy a number, further the	1	<i>K1</i>	CO5
	within the file system?			
10	(a) Name (b) Identifier (c) Size (d) Location	1	V 1	COS
19.	which of the following the attribute fleeds control information determines who can do	1	K1	CO5
	reading, writing, executing, and so on? (a) Protection (b) identifier (c) Type (d) Time, date, and user identification			
20	Which of the following is a named collection of related information that is recorded on	1	<i>K1</i>	CO5
20.	secondary storage and is the smallest allotment of logical secondary storage?			
	(a) Directory (b) File (c) Disk (d) All of the above			
	$PART - B (10 \times 2 = 20 Marks)$			
	Answer ALL Questions			<i>a</i>
21.	Compare and contrast warm and cold booting.	2	K2	CO1
22.	What are the different types of multiprocessing?	2	<i>K1</i>	CO1
23.	List four situations under which CPU scheduling decisions take place.	2	<i>K1</i>	CO2
24.	Define Gantt chart.	2	K1	CO2
25.	Define multithreading.	2	<i>K1</i>	CO3
26.	What do you mean by mutation?	2	<i>K1</i>	CO3
27.	Compare and contrast logical and physical addresses.	2	K2	CO4
	What is Demand Paging?	2	<i>K1</i>	CO4
	What are the various file operations?	2	<i>K1</i>	CO5
	List the disadvantages in using a single directory.	2	K1	CO5
30.	List the disadvantages in using a single directory.	2	111	000
	DART COMMAN			
	PART - C ($6 \times 10 = 60 \text{ Marks}$)			
31.	Answer ALL Questions a) Explain the various system calls.	10	K2	CO1
<i>J</i> 1.	OR			
		10	K2	CO1
	b) Contrast the functionality of system boot with respect to operating systems.	10	K2	COI
32.	a) Consider the following set of processes, with the length of the CPU burst time	10	K2	CO2
	given in milliseconds. Draw the Gantt chart illustrating the execution of these			
	processes using FCFS, SJF(preemptive), RR(time quantum=2), Priority. Calculate			
	the average turn around time, average waiting time			
	Process Arrival Time Burst time Priority			
	P1 0 10 2			
	P2 1 6 3			
	P3 2 12 1 P4 3 15 4			
	II J IJ T			

OR

	b)	Relate the process states and process control block in detail.	10	K2	CO2
33.	a)	Explain deadlock and explain in detail about the methods of handling deadlocks. OR	10	K2	CO3
	b)	What is Semaphore? Demonstrate Bounded Buffer Producer Consumer Problem using Semaphore.	10	K2	CO3
34.	a)	Explain paging scheme of memory management. What hardware support is needed for its implementation?	10	K2	CO4
		OR			
	b)	Discuss with an example, the following allocation algorithm. (i) First fit (ii) Best fit (iii) Worst fit	10	K2	CO4
35.	a)	Classify different Disk scheduling algorithms SCAN, CSCAN, CLOOK.	10	K2	CO5
		OR			
	b)	Explain in detail about file allocation methods.	10	K2	CO5
36.	a) i)	Compare paging with segmentation in terms of the amount of memory required by the address translation structures in order to convert virtual addresses to physical addresses.	5	K2	CO4
	(ii	Summarize different free space management techniques in detail.	5	K2	CO5
	11)				
		OR			
	b) i)	Explain with neat diagram explain how logical address is translated into physical address.	5	K2	CO4
	ii)	Outline the following with appropriate diagrams a. Two level directory structure. b. Acyclic-graph directory structure.	5	K2	CO5