Reg. No.	
----------	--

Question Paper Code 13276

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Fifth Semester

Computer Science and Business Systems 20CBPC501 - COMPILER DESIGN

Regulations - 2020

Dι	ration: 3 Hours	Aax. Mai	rks: 1	.00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$		<i>K</i> –	
	Answer ALL Questions	Marks	Level	CO
1.	Which computer program accepts the high-level language and converts it into assemblanguage?	oly ¹	K1	CO1
	(a) Interpreter (b) Linker (c) Assembler (d) Compiler			
2.	Which errors can be checked by a Compiler?	1	<i>K1</i>	CO1
	(a) Logical Error (b) Syntax Error (c) Run time error (d) Both (a) and (b)			
3.	Which phase of the compiler groups the characters into tokens?	1	K1	CO1
1	(a) Scanner (b) Parser (c) Code Optimizer (d) Code Generator	1	<i>K</i> 2	CO1
4.	The transitional function of a NFA is	1	K2	COI
_	(a) $Q \times \Sigma \rightarrow Q$ (b) $Q \times \Sigma \rightarrow 2^Q$ (c) $Q \times \Sigma \rightarrow 2^n$ (d) $Q \times \Sigma \rightarrow Qn$	7	V1	CO2
5.	Bottom up parser generates(h) Dichtmost derivation	1	<i>K1</i>	CO2
	(a) Leftmost derivation (b) Rightmost derivation			
6.	(c) Leftmost derivation in reverse Which is the most powerful parser? (d) Rightmost derivation in reverse	1	K1	CO2
0.	(a) SLR parser (b) CLR parser (c) LALR parser (d) LL parser			
7.	A top-down parser generates	1	<i>K1</i>	CO2
	(a) Left-most derivation in reverse (b) Left-most derivation			
	(c) Right-most derivation in reverse (d) Right –most derivation			
8.	Which grammar gives multiple parse trees for the same string?	1	<i>K1</i>	CO2
	(a) Unambiguous (b) Regular (c) Ambiguous (d) All of the above	,	1//2	go.
9.	An attributed grammar is a	1	<i>K</i> 2	CO3
	(a) A grammar that defines rules for error handling (b) A formal way to define comparing by associating attributes with grammar production	0		
	(b) A formal way to define semantics by associating attributes with grammar productions(c) A technique for code optimization			
	(d) A method used to generate machine code			
10.	· ·	1	K1	CO3
	(a) Inherited and Logical (b) Semantic and Syntactic			
	(c) Synthesized and Inherited (d) Static and Dynamic			
11.		1	<i>K1</i>	CO3
	(a) YACC (b) LEX (c) Symbol Table (d) Type Checking			
12.	What is the primary purpose of a symbol table in a compiler?	1	KI	CO3
	(a) To optimize the code (b) To store information shout variables, functions, and chiests			
	(b) To store information about variables, functions, and objects(c) To generate intermediate code			
	(d) To provide an execution environment for the program			
13.	Which of the following is an intermediate representation used in compilers?	1	K1	CO4
	(a) Abstract Syntax Tree (b) Source code (c) Machine code (d) Object code			
14.		1	<i>K1</i>	CO4
	(a) Directed Acyclic Graph (b) Control Flow Graph			
	(c) Syntax Tree (d) Finite State Machine			

15.	Whic	n of the following is an example of global optimization?	1	K1	CO4
	(a) Lo	op invariant code motion (b) Constant Propagation			
	(c) Co	ommon sub expression elimination (d) Strength reduction			
16.	Peep-	hole optimization is a technique used in compilers to	1	<i>K1</i>	CO4
	(a) Re	emove redundant code at the global level			
	(b) In	prove code within a small window or sequence of instructions			
	(c) El	iminate unused variables			
	(d) Re	eorganize loops for better performance			
17.	What is the primary goal of instruction scheduling in pipeline architectures?			K1	COS
	(a) To	minimize memory usage			
	(b) To	reduce execution time by avoiding pipeline stalls			
	(c) To	increase the number of instructions in a program			
		(d) To improve the readability of the code			
18.		n of the following is a key technique used for register allocation?	1	K1	COS
	(a) Graph coloring (b) Loop unrolling (c) Peephole optimization (d) Strength reduction				
19.	Which	n of these features is commonly associated with object-oriented programming	1	K1	COS
	langu				
	` /	rect memory access (b) Data abstraction and encapsulation			
		ow-level instruction manipulation (d) Recursive function optimization			
20.		does compilation of non-imperative programming languages differ from imperative	1	<i>K</i> 2	COS
	langu				
	. ,	eliminates the need for control flow structures			
		focuses more on mathematical functions and expressions rather than state changes			
		generates machine code without an intermediate representation			
	(d) It	uses more registers for storing variables			
		$PART - B (10 \times 2 = 20 Marks)$			
		Answer ALL Questions			
21	What	is a lexeme?	2	<i>K1</i>	COI
		ut the three parts of lex program.	2	K1	COI
		whether the given grammar is ambiguous or not.	2	<i>K</i> 2	CO2
25.	$S \rightarrow a$				
24		the rule for left recursion and illustrate it with an example.	2	<i>K</i> 2	CO2
	5. Differentiate synthesized and inherited attributes with example.				CO3
	6. Define Annotated Parse Tree.				CO3
	7. What is dead code elimination?			<i>K</i> 2	CO4
	8. Define three address codes.			K1	CO4
	9. Compare Non Imperative with Imperative programming languages.			<i>K</i> 2	COS
		ut the types of loop optimizations for cache memory.	2	K1	COS
		, p			
		$PART - C (6 \times 10 = 60 Marks)$			
		Answer ALL Questions			
31.	a)	Explain the various phases of compiler with neat diagram and translate the	10	<i>K</i> 2	COI
01.	α,	following statement c:=a-b*21.			
		OR			
	b)	Show the minimal DFA for the given regular expression $(a*/b*)*a$.	10	<i>K</i> 2	COI
	0)	Show the imminut 21111of the given regular expression (a ve v a			
32.	a)	Construct SLR (1) parser for the following grammar:	10	<i>K3</i>	CO2
	/	S->0A1 0B1 1A 1B2			
		OR			
	b)	Construct a predictive parser for the following grammar:	10	<i>K3</i>	CO2
	,	$E \rightarrow E + T \mid T$			
		$T \rightarrow T * F \mid F$			
		$F \rightarrow (id)$			
		Also parse the input string id+id*id.			
K1 -	– Remen	aber; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		132	<i>76</i>
		· · · · · · · · · · · · · · · · · · ·			

33.	a)	Explain Syntax Direct Definition with examples.	10	K2	CO3
		OR			
	b)	Summarize the parameter passing in Run Time Environment.	10	K2	CO3
34.	a)	Apply the various ways of representing intermediate code with neat examples. OR	10	К3	CO4
	b)	Discuss in detail about global data flow analysis.	10	<i>K3</i>	CO4
	U)	Discuss in detail about global data now analysis.			
35.	a)	Explain in detail about	10	K2	COS
	,	(i) Type Systems			
		(ii) Data Abstraction			
		OR			
	b)	Explain a simple code generator algorithm with suitable example.	10	K2	CO5
36.	a) i)	Explain Loop unrolling and Loop fusion in detail.	5	K2	CO4
	ii)	Discuss any three issues in the design of a code generator.	5	<i>K</i> 2	CO5
	,	OR			
	b) i)	Explain common subexpression elimination with example.	5	<i>K</i> 2	CO4
	ii)	Summarize the compilation of object oriented features.	5	<i>K</i> 2	CO5