		Reg. No.							
	Question Paper Cod	e	13290	6]	<u> </u>			
	Question Laper Cou		1527	0					
	B.E. / B.Tech DEGREE EXA	AMINATI Semester	ONS,	NOV	/ DEC 202	24			
				toma					
	Computer Science a		-		DIFILL				
	20CBPC502 - DESIGN AND A		S OF A	ALGO	RITHMS	j			
		ons - 2020							
D	uration: 3 Hours					Max	x. Ma	rks: 1	100
	PART - A (MCQ) (2			ks)			Marks	K –	CO
	Answer ALI	-	8						
1.	A trade-off between time and space complexity in	volves:					1	KI	<i>CO1</i>
	(a) Increasing memory to reduce execution time(b) Decreasing code length to improve readability								
	(c) Using more CPU cycles to save memory								
	(d) Using dynamic programming to save executio	n time							
2.	The performance of an algorithm can be measured		of:				1	Kl	CO1
	(a) Execution time and memory usage			h and r	nodularity	1			
	(c) Software version and hardware specifications	(d) User	interf	ace and	d usability	7			
3.	Which of the following is NOT a characteristic of	a good alg	orithm	n?			1	Kl	<i>CO1</i>
		Definitenes	ss (e	d) Inco	onsistency		_		
4.	What is a recurrence relation?	<u>.</u>					1	K1	<i>CO2</i>
	(a) An equation that describes a function in terms of its previous values								
	(b) A method for solving non-recursive algorithms								
	(c) A technique used exclusively for iterative algo(d) A tool for analyzing algorithm correctness	oriumis							
5	What is the time complexity of the recurrence rela	ation $T(n) =$	= 2T(n/	(2) + 0) (n)?		1	K1	CO2
5.	(a) $O(n)$ (b) $O(n \log n)$ (c) $O(n^2)$		O(log		(11).				
6.	In a recursion tree, what does the height of the tree	• •	· •	/			1	Kl	<i>CO2</i>
	-	he maximu		th of r	ecursion				
		he space co	1	-					
7.	A greedy algorithm for the activity selection prob			vities b	ased on:		1	Kl	CO3
		Shortest du							
0		Earliest fin	ish tim	le			1	K1	CO3
8.	Which of the following is NOT a heuristic method (a) Hill Climbing (b) Si	mulated A	nnealin	זמ			1		005
		enetic Algo		ig					
9.	Bin packing problems are classified as:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1	Kl	CO3
	(a) Polynomial-time problems	(b) NP-c	omplet	te prob	olems				
	(c) P-complete problems	(d) Line	-	-					
10.	What characterizes a directed graph (DiGraph)?						1	Kl	<i>CO</i> 4
	(a) It has no edges.								
	(b) Edges have no specific direction.								
	(c) It contains cycles.		.1						
11	(d) Edges have a specific direction, going from on What is the primary advantage of breadth first				lonth first	agenci	1	K1	CO4
11.	What is the primary advantage of breadth-firs (DFS)?	a search (ргз) (over c	epui-first	search	1	A1	0.04
		b) Guarant	ees fin	dino th	e shortest	nath			
		d) More m				Pull			
		.,							

12.	Dijkstra's Algorithm is one example of a shortest path algorithm. (a) Single-source Shortest path algorithm (b) All-pairs Shortest path algorithm	1	K1	<i>CO</i> 4
	(c) Minimum spanning tree (d) Topological sorting			
13.	Which of the following problems is an example of a tractable problem?	1	K1	CO5
	(a) Sorting an array using merge sort (b) The Traveling Salesman Problem (TSP)			
1.4	(c) Boolean Satisfiability (SAT) Problem (d) Hamiltonian Cycle Problem	,	<i>V</i> 1	C05
14.	Which class of problems did Cook's Theorem introduce?	1	K1	C05
15	(a) P(b) NP-hard(c) NP-complete(d) PSPACEWhich of the following is NOT true about NP-complete problems?	1	K1	CO5
15.	(a) Every NP-complete problem is in NP			
	(b) If any NP-complete problem can be solved in polynomial time, all NP problems can be			
	(c) Every problem in P is NP-complete			
1.5	(d) NP-complete problems are the hardest problems in NP	1	1/1	605
16.	Which of the following time complexities represents a intractable problem? (a) $O(\pi^{1/2})$ (b) $O(\pi^{1/2})$ (c) $O(\pi^{1/2})$ (d) $O(\pi)$	1	Kl	C05
17	(a) O(n!) (b) O(n^2) (c) O(n^3) (d) O(n) Which of the following is a real-world application of quantum computing?	1	Kl	C06
17.	(a) Solving NP-complete problems in polynomial time			
	(b) Simulating molecular structures for drug discovery			
	(c) Solving simple arithmetic problems			
	(d) Enhancing cloud storage			906
18.	Which of the following types of randomized algorithms always gives a correct result but	Ι	Kl	<i>C0</i> 6
	has a random running time?(a) Monte Carlo algorithm(b) Las Vegas algorithm			
	(c) Greedy algorithm (d) Approximation algorithm			
19.	What is the primary difference between an exact algorithm and an approximation	1	Kl	C06
	algorithm?			
	(a) Exact algorithms are always faster than approximation algorithms			
	(b) Approximation algorithms guarantee an exact solution			
	(c) Exact algorithms always find the optimal solution, while approximation algorithms find near-optimal solutions in less time			
	(d) Approximation algorithms solve problems that exact algorithms cannot solve			
20.	What is superposition in quantum computing?	1	Kl	<i>CO6</i>
	(a) The ability of a qubit to be in multiple states (0 and 1) simultaneously			
	(b) The process of measuring a qubit's state			
	(c) A type of quantum entanglement (d) The colleging of a subidue state to 0 or 1			
	(d) The collapsing of a qubit's state to 0 or 1			
	$PART - B (10 \times 2 = 20 Marks)$			
	Answer ALL Questions			
21.	How to measure the algorithm running time?	2	Kl	<i>C01</i>
22.	Summarize the key steps in problem-solving?	2	K2	COI
23.	What is a recurrence tree?	2	Kl	<i>CO2</i>
24.	When would you use the substitution method?	2	K1	<i>CO2</i>
25.	Define the term exhaustive search.	2	<i>K1</i>	CO3
26.	Outline the Principle of Optimality.	2	K2	CO3
27.	What does Floyd's algorithm do?	2	K1	<i>CO</i> 4
28.	Define topological sorting.	2	K1	<i>CO</i> 4
	List some examples of P and NP problem.	2	K1	CO5
	What is Relative approximation?	2	K1	<i>CO</i> 6

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) Explain the performance measurements of algorithm Time and Space trade off. 10 K2 CO1

- b) Explain briefly on Big oh Notation, Omega Notation and Theta Notations. Depict ¹⁰ K2 CO1 the same graphically.
- 32. a) Explain in detail about Mathematical analysis of recursive algorithms. 10 K2 CO2 OR
 - b) Explain in detail about Recursion Tree Method with example.
- 33. a) Solve the following instance of the knapsack problem using the branch and bound 10 K3 CO3 algorithm. Knapsack capacity W=10.

Item	Weight	Value
1	4	\$40
2	7	\$42
3	5	\$25
4	3	\$12

b) Solve the travelling salesperson instance defined by the following cost matrix 10 K3 CO3

∞	20	30	10	11
15	8	16	4	2
3	5	8	2	4
19	6	18	8	3
16	4	7	16	8

OR

Draw the state space tree and show the reduced matrices corresponding to each of the node.

34. a) Outline the minimum spanning tree using Prim's algorithm.

 $\begin{array}{c}
 & 3 & 9 \\
 & 4 & 2 & 6 \\
 & 4 & 2 & 6 \\
 & 5 & 8 & 3 \\
 & 4 & 5 & 1 \\
 & 3 & 5 & 7 & 8 & 2 \\
\end{array}$ OR

- b) Demonstrate single source shortest path used in Dijkstra's Algorithm with an ¹⁰ K2 CO4 Example.
- 35. a) Explain Cook's theorem in detail. 10 K2 CO5
 - b) Compare and contrast between Tractable and non-tractable problems with suitable *10 K2 CO5* examples.
- 36. a) Illustrate Vertex Cover Randomized algorithm in detail. OR 10 K2 CO6 10 K2 CO6
 - b) Explain in detail about polynomial approximation Algorithm with example. 10 K2 CO6

10

10

K2 CO4

K2

CO2