| Reg. No. |  |  |  |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|--|--|--|

**Question Paper Code** 

12395

### B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Fifth Semester

# Computer Science and Business Systems 20CBPC502 - DESIGN AND ANALYSIS OF ALGORITHMS

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

## $PART - A (10 \times 2 = 20 Marks)$

**Answer ALL Questions** 

|     |                                               | Marks,<br>K-Level, CO |
|-----|-----------------------------------------------|-----------------------|
| 1.  | How to measure the algorithm running time?    | 2,K1,CO1              |
| 2.  | Differentiate Feasible and Optimal Solution.  | 2,K2,CO1              |
| 3.  | Recall Master's Theorem.                      | 2,K1,CO2              |
| 4.  | Define recurrence relation.                   | 2,K1,CO2              |
| 5.  | Define Brute Force Attack.                    | 2,K1,CO3              |
| 6.  | What is state space graph?                    | 2,K1,CO3              |
| 7.  | List two applications of graphs.              | 2,K1,CO4              |
| 8.  | What is the purpose of Minimum Spanning Tree? | 2,K1,CO4              |
| 9.  | What is the significance of Cook's Theorem?   | 2,K1,CO5              |
| 10. | Why should we use randomized algorithm?       | 2,K1,CO6              |
|     |                                               |                       |

### PART - B $(5 \times 13 = 65 \text{ Marks})$

**Answer ALL Questions** 

11. a) Explain how many algorithms you can write for solving find the prime 13,K2,CO1 numbers. Compare which is the simplest and the most efficient.

#### OR

- b) Explain in detail about the fundamentals of algorithmic problem <sup>13,K2,CO1</sup> solving.
- 12. a) Explain in detail the general framework for analyzing an algorithm's <sup>13,K2,CO2</sup> efficiency.

#### OR

- b) Explain Master Theorem for solving recurrence of the form:  $T(n) = \frac{13,K2,CO2}{aT(n/b)+f(n)}$
- 13. a) Solve: Find the solution for 0/1 knapsack problem using dynamic  $^{13,K3,CO3}$  programming (p1,p2,p3, p4) = (11, 21, 31, 33), (w1, w2, w3, w4) = (2, 11, 22, 15), M=40, n=4.

12395

- b) Identify how backtracking techniques can be used to solve the n- 13,K3,CO3 queens problem with an example.
- 14. a) Compare and contrast Tractable and non-tractable problems with 13,K2,CO5 suitable examples.

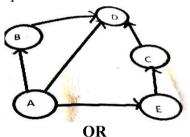
OR

b) Summarize Reduction techniques with suitable examples in detail. 13,K2,CO5

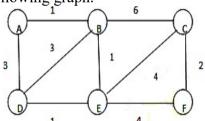
--,---,--

15. a) Explain Travelling Salesman Problem with suitable example.

13,K2,CO6


OR

b) Explain in detail about Quantum Algorithm with example.


13,K2,CO6

PART - C  $(1 \times 15 = 15 \text{ Marks})$ 

16. a) Solve: For the following graph, In what order are the vertices visited using BFS and DFS starting from vertex A? Where a Choice exists, use alphabetical order.



b) Solve: Using minimum spanning tree find the shortest path and write 15,K3,CO4 algorithm for the following graph.

