
	Reg. No.	
	Question Paper Code12552	
B.E. / B.Tech - DEGREE EXAMINATIONS, NOV / DEC 2023 Third Semester		
Computer and Communication Engineering		
20CCPC301 - DIGITAL LOGICS AND SYSTEM DESIGN (Regulations 2020)		
Dur		larks: 100
PART - A (10 × 2 = 20 Marks) Answer ALL Questions		
1.	State the Features of ECL.	Marks, K-Level, CO 2,K1,CO1
2. 3.	Infer how conversion of 0.6875, decimal value to Octal & Binary occurs? State the difference between Demux and Decoder.	2,K2,CO1 2,K1,CO2
4.	Infer the following Boolean function using 8:1 multiplex $F(A,B,C)=\sum(1,3,5,6)$.	er 2,K2,CO2
5.	Define Flow Table.	2,K1,CO4
6.	Identify, what is the minimum number of Flip Flops required to design counter of modulo 60?	a 2,K2,CO4
7.	Distinguish between Critical and Non critical Races.	2,K2,CO5
8.	Outline the steps for the design of asynchronous sequential circuit.	2,K2,CO5
9.	What is memory decoding?	2,K1,CO6
10.	Distinguish between PAL, PLA and PROM.	2,K2,CO6
	PART - B (5 × 13 = 65 Marks) Answer ALL Questions	
11.	 a) Explain the working principle of Hamming Code with an example State its advantages over parity codes. OR 	le. 13,K2,CO1
	b) Write short notes on (i) RTL (ii) ECL	13,K1,CO1
12.	a) Implement a staircase light, which is controlled by two-way switched one is at the top of the stairs and the other is at the bottom of the stairs.	
	(i) Make a truth table for this system.	3,K3,CO2
	(ii) Write the logic function in SOP form.	3,K3,CO2
	(iii) Realize the circuit using basic logic gates.(iv) Realize the circuit using minimum number of NAND and NC gates.	3, <i>K</i> 3, <i>C</i> 02 DR 4, <i>K</i> 3, <i>C</i> 02
	0	

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12552

OR

- b) Construct the BCD code to Excess 3 code with neat logical diagram. 13,K3,CO2
- 13. a) Outline a sequential circuit for a given state diagram, use state ^{13,K2,CO4} reduction if necessary and also use D flip-flop and give what is the aim of Set reduction?

- b) Explain the universal shift registers with neat diagram. 13,K2,CO4
- 14. a) (i) What is a Hazard? Give hazard free realization for the following 9,K2,CO5 Boolean function. F (A, B, C, D) = $\sum m$ (1,5,6,7) using AND- OR gate network.
 - (ii) Define Essential Hazards with an example. 4,K1,C05

OR

- b) Illustrate the design an asynchronous sequential circuit with inputs x1 ^{13,K2,C05} and x2 and one output z. Initially and at any time if both the inputs are 0, output is equal to 0. When x1 or x2 becomes 1, z becomes 1. When second input also becomes 1, z=0; the output stays at 0 until circuit goes back to initial state.
- 15. a) Explain how a BCD to Excess-3 code converter designed and ^{13,K2,CO6} implement the same using suitable PLA.

OR

b) (i) Illustrate the following Boolean functions using 8 x 2 PROM. F1= 6,K2,CO6 $\Sigma m (3,5,6,7)$ and F2= $\Sigma m (1,2,3,4)$.

(ii) Implement the following Boolean functions using PLA with 3 ^{7,K2,CO6} inputs, 4 product terms and 2 outputs. F1= $\sum m(3,5,6,7)$ and F2= $\sum m(1,2,3,4)$.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Develop a verilog program for Full Subtractor and explain its timing ^{15,K3,CO3} diagram waveform.

OR

b) Design a verilog HDL code for 4x1 MUX and 1x4 DEMUX. 15,K3,CO3

....