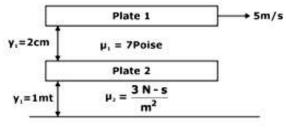
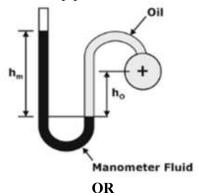
							-	1 1				1 I		- I - I		
			Reg. No).												
	Question Paper Cod		de	13	320	8										
		-														
	B.E. / B.Tech. -				NS,	NO	\mathbf{V} /	DE	C 2	2024						
		Third	l Semeste	r												
		Civil E	ngineerin	g												
	20	CEPC303 - FL	LUID ME	CHA	AN]	ICS										
		Regulat	ions - 202	20												
Dı	ration: 3 Hours										М	ax. N	Ma	rks: 1	00	
	PAR	T - A (MCQ)	$(20 \times 1 =$	20 M	Iar	ks)								K_		
		Answer AL	-			~)						M	arks	K – Level	С	0
1.	Who is the father of fluid mechan												1	K1	CO	21
	(a) Blaise Pascal (b) Leonardo	da Vinci (d	c) Ludwig	g Prar	ndtl		(d) S	Sati	sh I	Dhav	van	L				
2.	On increasing the temperature of												1	K2	CO)]
	(a) Remains constant		b) First de		ses	and	the	n in	cre	ases						
	(c) Increases	· · · · · · · · · · · · · · · · · · ·	d) Decrea	ses												
3.													1	K1	CO)]
	(a) Unity (b) Zero		nfinity	· · ·	/					pera	ture		,	1/1	~	~~
4.	Which one of the following press			naxii	muı	n pr	essu			C/	2		1	K1	CO	12
5	(a) Millibar (b) mm of Hg		N/mm ²			4				gf/c		. 1	1	K2	СС	7 2
э.	A small difference between two			-	-	wate	er is	10	be	mea	sure	20	1	Π2	C	12
	using a U – tube manometer. The (a) Mercury (b) Water		rbon tetra		_		(- 	Zar	osen	0					
6	What will be the centre of buoya											of	1	K2	С)2
0.	the block are $5 \times 2 \times 1$ m and the						111	ie u	1111	11510	115	01				
	(a) 0.27 (b) 0.32	(c) (5 0.	00.				(d) ().55	5				
7.	Match List I with List II and se			sing	the	e coo	les	give	en 1	· /			1	K2	CO)3
	lists:			0				0								
	List I		Ι	list I	Ι											
	A. Steady flow	1. Condition of	do not cha	inge	wit	h tin	ne a	t an	y p	oint						
	B. Uniform flow		2. Only convective acceleration													
	C. Irrotational flow	3. The spatial rate of change of velocity is zero														
	D. Converging steady flow 4. Zero circulation															
	(a) A-1, B-3, C-4, D-2			(b) A												
0	(c) A-1, B-3, C-2, D-4			(d) A	-3,	B-1,	, C-4	4, C)-2				1	vo	C	.
8.	Which section of venturimeter is					. (1	D - 11		41	- 1			1	K2	CO	15
0		t section (c) c		g sec	tior	1 (a	i) an	101	the	abo	ve		1	K1	СС	73
9.	The coefficient of discharge, c_d in (a) $c_d = c_v + c_c$ (b) $c_d = c_v$		$c_{\rm c} = c_{\rm v}/c_{\rm c}$			(J)	no	na	\f +1	hese			1	IX I	C	,,,
10	(a) $c_d - c_v + c_c$ (b) $c_d - c_v$ Froude's number is the square root					(u)) 1101	ne (JI U	lese			1	K1	С	74
10.	-	orce (c) surf			rce	-	(d) y	visc	0110	s for	re					
11.	Statement I: When variables are						· /					al	1	K2	С)4
	analysis		Jieign s i		040	15 0			411	110115	1011	uı				
	Statement II: When variables an	e more, then H	Buckingha	am π	m	etho	d is	us	ed,	sinc	e tl	ne				
	Rayleigh's method becomes cumbersome in dimensional analysis															
	(a) Statement I is true, but statement II is false															
	(b) Statement I is false, but statement II is true															
	(c) Both statement I and statement II are individually true and statement II is the correct															
	explanation of statement I															
	(d) Both statement I and statement		dually tru	e bu	t st	atem	nent	II i	s tl	ne no	ot tl	ne				
	correct explanation of statement	l														

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

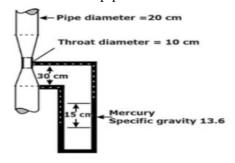

Λ 1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2		134	200		
K I	around a circle of radius 2 units. - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		132	208		
25.	If the velocity field is given by $u = 3x + 4y$ and $v = 4 - 2y$, then determine the circulation around a circle of radius 2 units	2	K2	СО3		
24.	What is the difference between hydrostatic force and buoyant force?	2	K2	<i>CO2</i>		
23.	2 N/m^2 to maintain speed. Determine the fluid viscosity between the plates. A hydraulic press has a ram of 15cm diameter and plunger of 1.5cm. It is required to lift a weight of 1000kg. Calculate the force required on the plunger.	2	K2	<i>CO2</i>		
22.	A plate at a distance of 1mm from a fixed plate moves at 60m/s and requires a force of	2	K2	CO1		
21.	Why fluids cannot sustain shear stress?	2	K2	COI		
PART - B (10 \times 2 = 20 Marks) Answer ALL Questions						
20.	(a) form drag (b) frictional drag (c) pressure drag (d) none of the above	1	Π2	000		
20	(a) X (b) \sqrt{X} (c) $X^{1/5}$ (d) $X^{4/5}$ The maximum contribution of total drag in case of air foil is due to	1	K2	CO6		
19.	(c) boundary layer changes from laminar to turbulent (d) All of the above The thickness of the boundary layer at a distance 'X' from the leading edge over a flat plate varies as	1	K1	<i>CO</i> 6		
18.	Boundary layer thickness increases as(b) velocity of the fluid increases(a) distance from the leading edge increases(b) velocity of the fluid increases	1	K2	<i>CO</i> 6		
	$\begin{array}{ccc} 0.5\frac{y}{\delta}. \text{ Ratio of momentum thickness to boundary layer thickness is } \frac{1}{n}. \text{ Find the value of n.} \\ (a) 4 & (b) 5 & (c) 6 & (d) 7 \end{array}$			<i>a</i>		
17.	(a) Foot valve of pump, 45° elbow, 90° elbow and close return bend (b) 90° elbow, foot valve of pump close return bend and 45° elbow (c) 45° elbow, 90° elbow, foot valve of pump and close return bend (d) Foot valve of pump, close return bend, 45° elbow and 90° elbow In a flow over plate laminar boundary layer exists, where velocity distribution is $\frac{u}{u} =$	1	К2	СО6		
	K were 0.40, 0.90, 1.5, and 2.2, then these would correspond respectively to					
16.	(a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is not a correct explanation of A (c) A is true but R is false (d) A is false but R is true The loss of head at various pipe fittings is given by the expression $k\frac{v}{2\sigma}^2$. If values of	1	K1	C05		
	contraction Reason (R): Separation of flow occurs at sudden contractions Which of the following is true?					
15.	 (a) Linear with zero value at the plates (b) Linear with zero value at the center (c) Quadratic with zero value at the plates (d) Quadratic with zero value at the centre (d) Quadratic with zero value at the centre 	1	К2	CO5		
14.	 (c) Inversely as the square of the velocity of flow (d) Inversely as the square of the diameter of pipe For a steady incompressible laminar flow between two infinite parallel stationary plates, the shear stress variation is 	1	K2	CO5		
13.	 (d) Weber model law is applicable, where phenomenon of cavitation takes place The loss of head in a pipe carrying turbulent flow varies	1	K2	CO5		
	 (a) Reynolds model law is applicable for flow around submarines (b) Froude's model law is applicable for flow of jet from an orifice (c) Froude's model law is applicable, when gravity forces are predominant in addition to inertial force 					
12.	Which of the following is not correct?	1	K2	<i>CO</i> 4		

26.	An orifice having a diameter of 10cm discharging water and the venacontracta formed has a diameter of 9cm If the coefficient of velocity is 0.96, then what is the coefficient of	2	K2	СО3
	discharge?			
27.	What are units and dimensions?	2	K1	<i>CO4</i>
28.	Why are distorted models used in the construction model of a river?	2	K2	<i>CO</i> 4
29.	Given a fluid with viscosity 0.01 poise flowing in a 6 mm diameter pipe, calculate the	2	K2	CO5
30.	maximum velocity for the flow to remain laminar. How does the shape factor influence the velocity profile within a boundary layer?	2	K2	<i>CO6</i>


PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31. a) Two plates as shown in figure are arranged. If plate 1 move with a velocity of 5m/s ¹⁰ ^{K3} ^{CO1} then what will be the velocity of plate 2 (assume velocity variation between plate is linear).

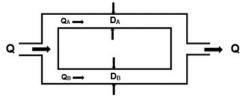


- OR
- b) Calculate the capillary effect in a glass tube of 2.5mm diameter, when immersed in ¹⁰ K³ CO1 water and mercury. Take $\sigma_w = 0.0725$ N/m and $\sigma_m = 0.52$ N/m in contact with air. The contact angle for water $\theta = 0^{\circ}$ C and for mercury $\theta = 130^{\circ}$ C.
- 32. a) The figure shows the cross-section of an oil pipe with a manometer attached. On 10 K3 CO2 the right side of the manometer, the manometric fluid is in contact with oil and on the left side of the manometer is open to the atmosphere. The oil has a specific gravity of 0.85 and the manometer fluid has a specific gravity of 1.5. What is the gauge pressure at the center of the pipe, if h_m is 10cm and h₀ is 5cm?

- b) A cylindrical buoy weighing 19.62 kN is floating in the ocean. The buoy has a 10 K3 CO2 diameter of 2 m and a height of 2.5 m. Given that the density of seawater ($\rho_{seawater}$) is 1020 kg/m³. State whether the equilibrium is stable or unstable.
- 33. a) The following cases represents the two velocity components, determine the third ¹⁰ K3 CO3 component of velocity, such that they satisfy the continuity equation $u = x^2+y^2+z^2$; $v = xy^2 - yz^2+xy$ $v = 2y^2$; w = 2xyz.

b) A venturimeter is connected to measure the flow of water in a vertical pipe with a 10 K3 CO3 diameter of 20 cm. The deflection in the mercury manometer connected to the venturimeter is 15 cm. Assuming no losses in the venturimeter and take g=9.8m/s², determine the flow rate of water in the pipe.

34. a) Using Buckingham's π theorem, show that the velocity through a circular orifice is 10 K3 CO4 given by $v = \sqrt{2gh}\phi(\frac{D}{H}, \frac{\mu}{\rho v H})$ where H is the head causing flow, D is the


diameter of the orifice, μ is the coefficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.

OR

- b) A proposed model of a river stretch of 15km is to have a horizontal scale of 1/200 ¹⁰ ^{K3} ^{CO4} and vertical scale of 1/40. If the normal discharge, width and depth of the river are 152m³/s, 90m and 2m respectively. Estimate the corresponding model quantities. What values of Manning's roughness n is to be provided in the model to represent a prototype roughness value of 0.025?
- 35. a) The difference in water surface level in two tanks which are connected by three ¹⁰ K³ CO⁵ pipes in series of length 300m, 170m and 210m and of diameters 300mm, 200mm and 400mm respectively is 12m. Determine the rate of flow of water, if coefficient of friction are 0.005, 0.0052 and 0.0048m respectively.

OR

b) A main pipes divides into two parallel pipes which again forms one pipe as shown ¹⁰ K3 CO5 in figure. The length and diameter for the first parallel pipes are 2000m and 1m respectively, while the length and diameter of second parallel pipes are 2000m and 0.8m respectively. Find the rate of flow in each parallel pipe, if the total flow in the main is 3m3/s. the coefficient of friction for each parallel pipe is same and equal to 0.005.

36. a) Determine the shape factor for the velocity distributions in the boundary layer ¹⁰ K3 CO6 given by $\frac{u}{U} = 2\left(\frac{y}{\delta}\right) - \left(\frac{y}{\delta}\right)^2$, where u is the velocity at a distance y from the plate and u = U at $y = \delta$, where δ =boundary layer thickness.

- OR
- b) A kite $0.8m \times 0.8m$ weighing 0.4kgf. Assumes an angle of 12° to the horizontal. ¹⁰ K³ CO6 The string attached to the kite makes an angle of 45° to the horizontal. The pull on the string is 2.5kgf, when the wind is blowing at the speed of 30kmph. Find the corresponding coefficient of drag and lift. Take density of air as 1.25kg/m³.