		Reg. No.									
	Question Paper Cod	le 1	12445								
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023											
	Fourth	Semester									
		gineering									
	20CEPC401 - APPLIED HY		IC F	ENG	INE	EF	RINC	J			
	× C	ons 2020)									
Dur	ation: 3 Hours						Ma	ıx. N	Iark	cs: 10)0
	PART - A (10>			s)							
1.	Answer AL What you understand by "Flow in open									K-Lev	rks, el, CO ,CO1
2.	Define the term hydraulic mean depth.										.CO1
2. 3.	What are the empirical formulae for	determini	na	tha 1	vəlu		f C	hozz	<i>,</i> 's		,CO2
5.	constant.	uciciliiii	ng	the	vaiu		лс	nezy	5	2,111	,001
4.	Define the term critical velocity.									2,K1	,CO2
5.	Write down the Equation for calculating	g length of	Ba	ck wa	ater	cui	ve.			2,K1	,CO3
6.	What are the assumptions made in G.V.F?	deriving t	the	dyna	amio	c e	quati	ion	of	2,K1	,CO3
7.	What is celerity?									2,K1	,CO4
8.	What are the applications of hydraulic j	jump?								2,K1	,CO4
9.	Differentiate between turbine and pump	os.								2,K2	,CO5
10.	Give the range of specific speed val turbine and Pelton wheel turbine.	ues of the	e Ka	aplan	tu:	rbir	ne, F	ranc	cis	2,K1	,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) A trapezoidal channel has side slopes of 1 horizontal to 2 vertical and ^{13,K3,CO1} the slope of the bed is 1 in 2000. The area of the section is 42 m²; Find the dimension of the section if it is most economical. Determine the discharge of the most economical section if C = 60.

OR

- b) Find the diameter of a circular sewer pipe which is laid at a slope of 1 13,K3,CO1 in 10000 and carries a discharge of 1000 liters/s when flowing half full. Take the value of Manning's N = 0.02.
- 12. a) Derive the conditions for the rectangular section to be most ^{13,K3,CO2} economical.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12445

OR

- b) Derive Chezy's Equation for open channel flow.
- 13. a) Calculate length of back water curve in a rectangular channel that ^{13,K2,CO3} conveys water. The depth of flow at end of control volume is 0.4m and velocity of water is 1 m/s. The depth of flow of the beginning of control volume is 0.2m and velocity of flow is 1.2 m/s. Take $i_b = 1$ in 2000. $i_e = 0.00004$.

OR

b) Derive the Dynamic Equation of Gradually varied flow. 13,K2,CO3

13.K3.CO2

14. a) A rectangular channel of width 2m conveys 1.5 m³/s of water with a ^{13,K3,CO4} depth of 0.3m. Check whether hydraulic jump occurs or not. If occurs, (i) Calculate depth of jump (ii) Energy loss.

OR

- b) Derive an expression for energy loss when jump occurs in open 13,K2,CO4 channels.
- 15. a) (i) Draw neat sketches of the Pelton turbine and Francis Turbine 5,K2,CO5(ii) Describe briefly the function of various main components of 8,K2,CO5Pelton turbine with neat sketches.

OR

b) What do you understand by the characteristic curves of a turbine? ^{13,K2,CO5} Name the important types of characteristic curves.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) A single acting reciprocating pump running at 30 rpm delivers 0.012 15,K3,CO6 m^3 /s of water. The diameter of the piston is 25cm and stroke length is 50cm. Determine: (i) The theoretical discharge of the pump, (ii) Coefficient of discharge, and (iii) Slip and percentage slip of pump.

OR

b) The centrifugal pump is running at 1000 rpm. The outlet vane angle of ^{15,K3,CO6} the impeller is 30° and velocity of flow at outlet is 3 m/s. If the manometric efficiency of the pump is 75%, Determine: (i) The diameter of the impeller and (ii) The width of the impeller at outlet.