			R	leg. No.												
		0	uestion Pape	r Code		12	829)								
		B.E. / B.Tech.	- DEGREE I	EXAMIN	JAT	ION	S. 7	APF	RIL	/ M		202	4			
			Fi	ifth Seme	ester		~,-			, 1,1			-			
			Civ	il Engine	erii	1g										
		20CE	PC501 - FOU	INDATI	ON	ENC	JIN	EE	RIN	G						
			Reg	ulations -	- 202	20										
Du	ration	: 3 Hours	C								Μ	[ax.	Ma	rks:	100	
			PART - A	$(10 \times 2 =$	20	Mar	ks)						Mauk	<u> </u>	co	
	Answer ALL Questions												wi ur KS	Level	ιυ	
1.	Explain the merits and demerits of wash boring.												2	K2	<i>C01</i>	
2.	List the different objectives of site investigation.											2	Kl	<i>CO1</i>		
3.	List the factors affecting Bearing capacity.												2	Kl	<i>CO2</i>	
4.	Explain the requirements of good foundation.												2	K2	<i>CO2</i>	
5.	What are the components of settlement?												2	Kl	CO3	
6.	Compare immediate settlement and consolidation settlement.											2	K2	CO3		
7.	Draw on cl	the contact press ay and sand.	sure distribution	on diagra	ım ł	oelov	v ri	gid	foot	ing	resti	ng	2	K1	<i>CO4</i>	
8.	List	out the types of ma	Id sand. $2 K1 CO4$ In types of mat foundation. $2 K1 CO4$ In types of mat foundation. $2 K1 CO4$													
9.	Illustrate Converse-Labarre formula for group efficiency of piles.									2	K2	CO5				
10.	List the different types of piles according to their functions.										2	K1	CO5			
			PART - B (Answer	(5 × 13 = • ALL Ou	65] lesti	Mar l ons	ks)									
11.	a)	Illustrate with n exploration.	eat sketch a	bout the	ge	ophy	sica	al n	neth	od	of s	oil	13	K2	C01	
	1 \			UK		.1		0	•1				12	W2	<i>c</i> 01	
	b)	Explain about the with neat sketche	e any two typ s.	es of bor	ing	meth	lod	of s	501l (exp	lorati	on	13	K2	COI	
12.	a)	Explain Terzagh Shear failure with	i's analysis on assumptions.	of bearin	g ca	apaci	ty	of s	soil	in	gene	ral	13	K2	CO2	
			-	OR												
	b)	Explain three mo	des of shear fa	ailure wit	h fig	gures	•						13	K2	<i>CO2</i>	

13. a) A plate load test was conducted with a 30 cm square plate at a depth of ¹³ K3 CO3 1.2m below GL on a cohesive soil having $\Phi = 0$. The failure was observed at a load of 36kN. The WT was observed to be at a depth of

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12829

4.7m below ground surface. Compute ultimate BC for strip footing 1m wide with its base located at same level as the plate and in the same soil. Unit weight of the soil is 16.8kN/m². Also calculate SBC if FOS = 3.

OR

- b) Explain the plate load test to determine the bearing capacity of soil. 13 K2 CO3
- 14. a) Construct a strap footing for the following data : Allowable pressures: $150 \text{ kN/m}^3 + \text{reduced L.L}$ $25\text{KN/m}^3 + \text{L.L}$ Column loads DL 500kN600 kN

LL 450kN 800 kN Proportioning the footing for uniform pressure under DL + reduced LL. Distance of c/c of column =5.4 m. Projection beyond column should not be more than 0.5 m.

OR

- b) Explain the IS codal provisions and recommendations for the design of ¹³ K² CO⁴ Raft (or) Mat foundation.
- a) Solve the group efficiency of a pile group which consists of 16 piles of ¹³ K3 CO5 each 20m long and diameter with c/c distance on both directions equal to 1m which are embedded on a clay deposit having cohesive strength of 35 kN/m² by static method. Feld's rule and Converse Labara formula. Take adhesion factor as 0.6.

OR

b) Explain in detail the procedure for pile load test to determine the load ¹³ K² CO5 carrying capacity of pile.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Construct a sketch and explain coulomb's wedge theory for soil ¹⁵ K3 CO6 pressure distribution.

OR

b) A retaining wall with a smooth vertical back is 10m high and retains a ¹⁵ K3 CO6 two layers and backfill with the following properties: 0 - 5 m depth: $\phi = 30^{\circ}$, $\gamma = 18 \text{ kN/m}^3$

Below 5 m : $\phi=34^\circ$, $\gamma=20$ kN/m³

Solve the active earth pressure distribution and their point of application. Draw the earth pressure distribution diagram assuming the water table is at the level of 5m below GL.