	R	eg. No.										
											1 1	
	Question Paper Code		132	97								
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024											
	Fifth Se	mester										
	Civil Engi	neering										
	20CEPC503 - DESIGN OF REINFORCED	CEME	NT (CON	ICI	RETH	E STI	RU(CTU	RE		
	Regulation	s - 2020										
(Use of IS456-2000, Code of Practice for Reinforced	Cement	Cond	crete	e an	d IS4	56-19	978	Desi	gn A	ids fo	or
	Reinforced Cement Co	ncrete is	perr	nitte	ed)							
Dı	ration: 3 Hours								Max	. Mar	ks: 1	00
	PART - A (MCQ) (20			rks)						Marks	K –	со
1.	Answer ALL Q What is Load Factor?	Juestions	5							1		C01
1.	(a) Ratio of working load to ultimate load									1	ni	001
	(b) Product of working load and ultimate load											
	(c) Product of working load and factor of safety											
2	(d) Ratio of ultimate load to working load									1	VI	C01
2.	What is serviceability?(a) It refers to condition when structure is not usable	2								1	Λ1	01
	(b) It refers to services offered in the structure											
	(c) It means that the structure should perform satisfa	actorily u	ınder	dif	fere	nt loa	ids, v	vitho	out			
	discomfort to user											
2	(d) It means that structure should be economically w	viable								1	K1	C01
3.	Spacing of stirrups in a rectangular beam, is (a) Kept constant throughout the length (b) Decre	eased to	ward	s the		ntre c	f the	hea	m	1	K1	COI
	(c) Increased at the ends (d) Incre							oca	111			
4.	The maximum depth of neutral axis for a beam with							nod	of	1	K2	<i>CO2</i>
	design											
5		0.50 d	fact		. ,	0.53		natio		1	K2	CO2
5.	For control of deflection, which of the following do as given in code	es not ai	lect	ne s	span		epun	ratio	08	1	<u>K2</u>	002
	(a) Span of the element	(b) Compression reinforcement										
	(c) Tension reinforcement	(d) Non	e of	the 1	nen	tione	d					
6.	A T-beam behaves as a rectangular beam of a width	equal to	o its f	lang	ge if	its n	eutra	l axi	IS	1	K2	<i>CO2</i>
	(a) Falls within flange(b) Falls below flange											
	(c) Coincides with the geometrical center of beam											
	(d) Falls below the centroid axis of the beam											
7.	An RCC beam can have maximum tension reinforce		:							1	K1	CO3
0	(a) 6% bD (b) 2% bD (c) 3%	bD			(d)	4% 1	рD			1	K2	СО3
8.	Torsion resisting capacity of a given RC section (a) decreases with decrease in stirrup spacing									1	<u>K2</u>	005
	(b) decreases with increase in longitudinal bars											
	(c) does not depend upon stirrup and longitudinal st	eels										
c	(d) increases with the increase in stirrup and longitu							_			77.5	0.02
9.	For the steel grade Fe415, the maximum tensile stra	un permi	tted	n li	mit	state	meth	od a	ıs	1	Kl	СО3
	per IS456:2000 is (a) 0.0020 (b) 0.0028 (c) 0.0	030		(d) ().00	38						
						20						

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

10.	The amount of reinforcement for main bars in a slab, is based upon	1	K1	<i>CO</i> 4					
	(a) Minimum bending moment (b) Maximum bending moment								
	(c) Maximum shear force (d) Minimum shear force								
11.	Distribution reinforcement in a simply supported slab, is provided to distribute	1	Kl	<i>CO</i> 4					
10	(a) Load (b) Temperature stress (c) Shrinkage (d) All of the mentioned	7	_V 2	CO4					
12.	In a one-way slab load is distributed over	1	K2	<i>CO4</i>					
12	(a) Shorter Side (b) Longer Side (c) Both Side (d) None of the mentioned For a longitudinal reinforcing bar in a column, the cover should not be less than	1	K2	CO5					
15.	(a) 10 mm (b) 20 mm (c) 30 mm (d) 40 mm	1	<u>R2</u>	005					
14.	The diameter of longitudinal bars in a column should not be less than	1	K1	CO5					
	(a) 4 mm (b) 8 mm (c) 12 mm (d) 16 mm								
15.	A column is a structural member designed primarily to take	1	K2	<i>CO5</i>					
	(a) Torsional load (b) Tensile load (c) Compressive load (d) Shear								
16.	The strength of column does not depend on	1	Kl	<i>CO5</i>					
	(a) Width of building (b) Material of column								
17	(c) Cross sectional configuration (d) Length of column	1	K2	C06					
1/.	A spread footing for a single column is known as the	1	K2	000					
18	(a) Isolated footing (b) Combine footing (c) Strip footing (d) Eccentric footing A combined footing is provided when the	1	K1	<i>CO</i> 6					
10.	(a) bearing capacity of soil is less								
	(b) end column is near a property line								
	(c) columns are very near to each other so that their footing overlap								
	(d) all of the mentioned								
19.	9. When a footing fails due to insufficient bearing capacity, distinct failure patterns are								
	developed depending upon								
	(a) Failure mechanism (b) Plastic equilibrium								
20	(c) Shear strength (d) All of the mentioned								
20.	0. If the width of the foundation for two equal columns is restricted, the shape of the footin								
	generally adopted, is(a) Square(b) Rectangular(c) Trapezoidal(d) Triangular								
	(a) Square (b) Rectangular (c) Trapezoidar (d) Thangular								
PART - B $(10 \times 2 = 20 \text{ Marks})$									
21	Answer ALL Questions What is meant by Modular ratio?	2	K1	C01					
	List the advantages of Limit State Design.	2	K1	C01					
	Compare between under reinforced and over reinforced section.	2	K2	<i>CO2</i>					
	Illustrate any two advantages of flanged beams.	2	K2	<i>CO2</i>					
	Interpret the expression for minimum shear reinforcement.	2	K2	CO3					
	Interpret the condition in which the torsion reinforcement is provided in beam.	2	K2	CO3					
27.									
	Illustrate any two general features of two way slab.	2	K2	<i>CO4</i>					
29.									
30.	Define safe bearing capacity.	2	K1	C06					

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31. a) A reinforced concrete beam is supported on two walls 750mm thick, spaced at a ¹⁰ K³ CO1 clear distance of 6m. The beam carries a super imposed load of 9.8kN/m. design the beam using M20 grade concrete and Fe415 grade steel.

OR

	b)	Calculate the amount of reinforcement required in a beam of a rectangular section of width 300mm and effective depth 500mm to resist a factored moment of 300kN-m. Use M20 & Fe415 steel.			
32.	a)	 Find the moment of resistance of T beam having following data 1. b_f=740mm 2. d=400mm 3. b_w=240mm 4. A_{st}=5 no of 20mm dia Fe415 bars 5. D_f=100mm M20 grade concrete 	10	K3	CO2
	b)	 Find the moment of resistance of T beam having following data 1. b_f=700mm 2. d=600mm 3. b_w=240mm 4. A_{st}=5 no of 25mm dia Fe415 bars 5. D_f=90mm M20 grade concrete 	10	К3	<i>CO</i> 2
33.	a)	Design a beam of 250mm wide and 500mm overall depth subjected to ultimate bending moment of 40kN-m, shearforce of 40kN, Torsional moment=30kN-m. Adopt effective cover of 50mm on top &bottom. Use M20 & Fe415steel. OR	10	К3	СО3
	b)	A RC beam of 250mm wide & 550mm deep is reinforced with 4bars of 25mm diameter. Effective cover is 50mm. It is provided with 2-legged 8mm diameter stirrups at a spacing of150mm. Determine the strength of the section. If the two bars are bent up at 45 degree at a section. What is the shear strength of the section in beam? Use M20 & Fe415 steel.	10	К3	<i>CO3</i>
34.	a)	Design a Two way slab for an office floor to suite the following data: Live load = 4 kN/sq.m , Load due to finishes = 1.5 kN/sq.m , Size of floor = $4 \text{ m X } 6 \text{ m}$, Edge conditions: Two adjacent edges discontinuous. Use M20 & Fe415 steel. OR	10	K3	CO4
	b)	Design a one way slab for the following data: Size = $3 \text{ m x } 9 \text{ m}$, width of the support = 230 mm , live load = 3 kN/Sq.m , floor finish = 1 kN/Sq.m . Use M20 & Fe415 steel.	10	К3	<i>CO4</i>
35.	a)	Design a axially loaded tied column 400 mm x 400 mm pinned at both ends with an unsupported length of 3 m carry a factored load of 2300 kN. Use M20 & Fe415 steel. OR	10	К3	C05
	b)	Design a uniaxially eccentrically loaded braced rectangular column for the following data. Ultimate axial load = 1200 kN , Ultimate moment in long direction = 280 kN-m , Unsupported length of the column = 3.4 m , Effective length in the long direction = 3.2 m , effective length in the short direction = 2.8 m , Column section = $360 \text{ mm} \times 540 \text{ mm}$. Use M20 & Fe415 steel.	10	K3	<i>C05</i>
36.	a)	A rectangular RCC column size 300 mm x 450 mm carrying an axial load of 1500 kN. If the safe bearing capacity of the soil is 120 kn/ sq.m. Design a suitable footing. Consider M25 & fe415 grade steel.	10	K3	C06

OR

b) Design a combined footing for two columns A & B, carrying loads of 500 kN and ¹⁰ K³ CO6 700 kN respectively. Column A is 300 mm x 300 mm in size and column B is 400 mm x 400 mmin size. The centre to centre spacing of the column is 3.4 m. The SBC of the soil is 150 kN/Sq.m. Use M20 & Fe415 steel.