		Reg. No.						
	Question Paper Co	ode	12396	5]			
	B.E. / B.Tech DEGREE EX	AMINATI	ONS,	, NOV	- / DE	C 202	3	
	Fifth	Semester						
	Civil H	Engineering	Ş					
200	CEPC503 - DESIGN OF REINFORC	CED CEME	ENT C	CONC	RET	E STF	RUC	TURES
	(Use of IS: 456 – 2000 and SP 1)	6 (Charts ar	nd Tab	oles) ai	re per	mitted)	
	(Use M20 concrete and Fe415 g	grade steel ı	inless	otherv	wise s	stated)		
P	(Regula	tions 2020)					1	100
D	uration: 3 Hours		ſ	``	Μ	ax. M	arks	: 100
	PARI - A (IU Answer A	$1 \times 2 = 20 N$	larks _. ns)				
1.	List out the types of limit state.		115				j	Marks, K-Level, CO 2,K1,CO1
2.	Under what circumstances doubly rein	nforced bea	ms are	e prefe	erred?			2,K2,CO1
3.	When shear reinforcement is necessar	v in RC bea	ams?	1				2,K2,CO3
4.	What is meant by Modular ratio?	5						2,K1,CO2
5.	Differentiate one-way slab and two-w	ay slab.						2,K2,CO4
6.	Why it is necessary to provide tran slab?	sverse rein	forcer	nent i	nao	one-wa	у	2,K2,CO4
7.	What are the functions of transverse r	einforcemen	nts in	colum	ns?			2,K1,CO5
8.	Classify the columns based on type of	f loading.						2,K2,CO5
9.	What are the governing factors decide	e the depth of	of foot	ting?				2,K1,CO6
10.	Under what circumstances combined	footing is p	referre	ed.				2,K2,CO6
	PART - B (5 : Answer A	× 13 = 65 M LL Questio	larks) ns)				

11. a) A T-beam has the following data: width of the flange = 750 mm; 13,K3,CO2 breadth of beam = 250 mm; effective depth = 500 mm; thickness of flange = 90 mm; applied moment = 130 kNm. Design the T-beam using M20 concrete and Fe415 steel.

OR

- b) Calculate the moment of resistance for following section properties 13,K3,CO2
 Width of flange=1280mm, Depth of flange=100mm, Width of rib=280mm, Effective depth=700mm, Area of steel=5# of 25mm diameter. Use Fe 415 grade steel, M20 Concrete.
- 12. a) A rectangular beam of width 250 mm and effective depth 500 mm is ^{13,K3,CO3} reinforced with 4 bars of 20 mm diameter. Determine the shear reinforcement required to resist a shear force of 150 kN. Use M30 concrete and Fe415 steel.

- b) Design a rectangular beam section of width 250 mm and effective ^{13,K3,CO3} depth 500 mm, subjected to Bending moment of 160 kNm, Shear force of 30 kN and Torsional moment of 10 kNm. Use M20 concrete and Fe415 steel.
- 13. a) The first floor of a residential building is made of a simply supported ^{13,K3,CO4} RC slab with 300 mm wall all around. The inside clear dimensions of the floor are 4 m x 12 m. Assume a live imposed load of 3 kN/ m² and a tile finish of 1.5 kN/ m². Use M25 concrete and Fe 415 steel.

OR

- b) Design a two-way slab for an office floor to suit the following data: 13,K3,CO4Live load = 4 kN/m² Load due to finishes = 1.5 kN/m² Size of floor = 4 m x 6 m Edge conditions: Two adjacent edges discontinuous Use M30 concrete and Fe 415 steel.
- 14. a) Design an axially loaded tied column 450 mm x 450 mm pinned at ^{13,K3,C05} both ends with an unsupported length of 3.2 m to carry a factored load of 2300 kN. Use M40 concrete and Fe415 steel.

OR

- b) A column 350 mm x 450 mm has an unsupported length of 3.5 m and ^{13,K3,CO5} fixed at both ends. It is subjected to a factored load of 1000 kN and an ultimate moment of 220 kNm about the major axis. Design the longitudinal reinforcement and lateral ties. Consider M25 grade concrete and Fe415 steel.
- a) Design a plain concrete footing for a 300 mm wall carrying 350 kN per ^{13,K3,CO6} meter length. Assume M20 grade concrete and the bearing capacity of soil to be 150 kN/m².

OR

b) A solid footing has to transfer a dead load of 150 kN and an imposed ^{13,K3,CO6} load of 450 kN from a square column 400 mm x 400 mm. The safe bearing capacity of the soil is 18 kN/m². Use concrete M20 and steel Fe415. Design the footing.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a)	(i) Explain two major limit states.	5,K2,CO1
		(ii) Define characteristic strength and design strength of a material.	5,K2,CO1
		(iii) What are the assumptions in Limit state design for flexure.	
		OP	

b) Design a rectangular section of reinforced concrete beam having a ^{15,K3,CO1} clear span of 5m which carries a service load of 4kN/m throughout the span. Use M20 grade concrete and Fe415 grade steel. Use limit state method.