				Dog No												
			_	Reg. No.												
	Question Paper Code						12861									
		B.E. / B. Te	ch DEGREE	EXAMIN	NAT]	ION	S, <i>A</i>	APRI	L/	Μ	[AY	202	24			
			I	Fifth Seme	ester											
			Ci	vil Engino	eerin	g										
2	OCEP	C503 - DESIG	N OF REINFO	ORCED C	EM	ENT	C	ONC	RE	T	E ST	ru	CTU	URE	S	
			Re	gulations	- 202	20										
Du	ration:	3 Hours									N	Лах	. Ma	rks:	100)
			PART - A	•			ks)						Marks $\frac{K}{Level}$ CO			
1	Answer ALL Questions What is meant by Modular ratio?										2		СО			
	Differentiate between WSD&LSD.										2	K2	CO	1		
2. 3.	Write any two advantages of flanged beams.										2	K1	СО	2		
<i>4</i> .		•	e provision for		spa	cing	of	vertio	cal	sti	rrup	s in	2	K1	CO	3
_		Beams?													60	
	Define Development length.											2		CO		
6. -	5 5											2		CO		
7.												2		CO		
	e										2		CO			
	What is the need of minimum eccentricity clause for a column design?										2		CO			
10.	What	t are the govern	ing factors to de	ecide the d	lepth	ot k	L.C.	Foot	ing	?			2	ΚI	CO	0
			PART - B Answe	(5 × 13 = er ALL Qu			ks)									
11.	a) i)	Explain two m	ajor limit states			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							7	K2	CO	1
	ii)	Define characteristic strength and design strength of a material. OR							6	K2	CO	1				
	b)	which carries	bly reinforced a service load . Use M20 grad hod.	beam of r of 8kN/m	n and	l is	sup	porte	ed c	n	230	mm		К3	CO	1
12.	a)	section proper Width of rib	moment of resi ties. Width of fl =300mm, Effec er, Use Fe 415 g	ange=250 ctive dept	0mm h=80	n, De)0mi	pth n,	of fl Area	ang	e=	1501	mm		K3	СО	2
	b) Determine the area of steel required for a T-beam with the following dimensions. Depth of slab=10mm, breadth of flange=750mm, breadth									-		K3	CO	2		
K1	– Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create											12861				

of web=250mm.The total depth=600mm, the beam is subjected to an ultimate moment of resistance of 525KN-m.Use16mm diameter of steel. Fe 415 grade steel, M20 concrete.

a) Design the Torsional Reinforcement in a RC Beam, 350 mm wide and ¹³ K3 CO3 750 mm deep, subjected to an ultimate twisting moment of 140 KN-m, and combined with an ultimate hogging moment of 200 KN-m and an ultimate shear force of 110 KN. Assume M25 concrete and Fe415 steel.

OR

- b) A rectangular beam 350mm wide and 550mm effective depth is ¹³ K3 CO3 reinforced with 6no's of 20mm bars out of which 3bars have been bent up at 45degree. Determine the shear resistance the bent up bars and the additional shear reinforcement required if it is subjected to an ultimate shear force of 300kN.Assume M20 grade of concrete and Fe415 steel bars.
- 14. a) Design a one way slab for the following data: Size = 3 m x 9 m, width ¹³ ^{K3} ^{CO4} of the support = 230 mm, live load = 3 kN/Sq.m, floor finish = 1 kN/Sq.m. Use M20 & Fe415 steel.

OR

- b) Design a Two way slab for an office floor to suite the following data: ¹³ K³ CO⁴ Live load = 4 kN/sq.m, Load due to finishes 1.5 kN/sq.m, Size of floor =4 m X 6 m, Edge conditions: Two adjacent edges discontinuous. Use M20 & Fe415 steel.
- 15. a) Design a column, 4m long restrained in position and direction at both ¹³ K3 CO5 ends to carry an axial load of 1600 kN. Use M20 & Fe415 steel.

OR

b) Determine the longitudinal steel for a column 400mm x 600mm ¹³ K³ CO⁵ carrying a axial load of 1600kN and factored moment (Major axis)=120kN-m, factored moment (Minor axis)=90kN-m, use M20 & Fe415 using SP16 method.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) A RCC Column 400x400mm supports an axial service load of ¹⁵ K3 CO6 1000kN.The SBC of soil at a site is 200 kN/Sq.m. Design a suitable footing for the column and sketch the reinforcement details. Use M20 & Fe415 steel.

OR

b) Write down the design steps in detail of a rectangular combined ¹⁵ K3 CO6 footing.

12861