Reg. No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12433

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, NOV / DEC 2023**

Fifth Semester

Civil Engineering

20CEPC504 - STRUCTURAL ANALYSIS I

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

PART-A $(10 \times 2 = 20 \text{ Marks})$

Answer ALL Questions

1.	Differentiate determinate and indeterminate structure.	K-Level, CO 2,K2,CO1
2.	Define strain energy.	2,K1,CO1
3.	State the limitations of Slope deflection method.	2,K1,CO2
4.	Why is slope deflection method called as displacement method?	2,K2,CO2
5.	Define carry over moment.	2,K1,CO3
6.	List any four reasons due to which sway may occur in portal frames.	2,K1,CO3
7.	Define a primary structure.	2,K1,CO5
8.	Differentiate flexibility and stiffness.	2,K2,CO5
9.	Explain the properties of stiffness matrix.	2,K2,CO6
10.	Write the stiffness matrix of a beam element simply supported at both ends.	2,K1,CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

11. a) A two span continuous beam ABC simply supported at ends A and C and continuous over support B. The span AB=5m carries a uniformly distributed load of 30kN/m over span AB. The span BC=6m carries a concentrated load 40kN acting at 3m from C. EI is constant. Find the support reactions using strain energy method.

OR

- b) A portal frame ABCD with supports A and D are hinged at same level ^{13,K3,CO1} carries a uniformly distributed load of 35kN/m over the span BC. Span AB=CD=4m and BC=5m. A horizontal load 40kN is acting at column head B. EI is constant. Calculate the bending moment using strain energy method.
- 12. a) Using slope deflection method, analyze a three span continuous beam 13,K4,CO4 ABCD simply supported at ends A and D and continuous over

Marks

supports B and C. The support B settles by 5mm. The span AB=4m carries a concentrated load 6kN acting at 3m from A. The span BC=5m carries a uniformly distributed load of 4kN/m. The span CD=6m carries a central concentrated load 8kN. Take $E=2x10^5$ N/mm²and $I=16x10^7$ mm⁴.

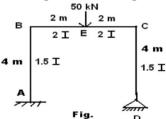
OR

b) A portal frame ABCD, A and D are fixed at same level. Span BC ^{13,K4,CO2} carries a uniformly distributed load of 20kN/m. EI is constant. Take Span AB=BC=CD=6m. Analyze the frame using slope deflection method and draw the bending moment diagram.

A beam ABC, 16m long, fixed at A and C continuous over support B, ^{13,K4,CO3} carries an uniformly distributed load of 3kN/m over the span AB and a point load of 10kN at mid span of BC. Span AB=BC=8m. Analyze the

OR

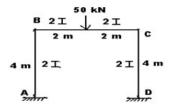
beam using moment distribution method. EI is constant.


13.

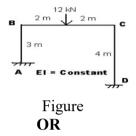
b) A portal frame ABCD with supports A and D are fixed at same level ^{13,K4,CO3} carries a uniformly distributed load of 80kN/m over the span BC. Span AB=BC=CD=5m. EI is constant throughout. Analyze the frame using moment distribution method.

14. a) A two span continuous beam ABC is fixed at A and hinged at support B and C. The span AB=10m carries a concentrated load of 240kN at centre and span BC=10m carries a central concentrated load 120kN at centre. Assuming vertical reaction at B and C as redundant and find the redundant forces using flexibility method. EI is constant.

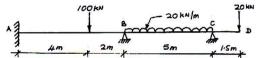
OR


b) Analyse the portal frame ABCD shown in figure by flexibility matrix 13,K3,CO5 method and sketch the bending moment diagram.

15. a) A continuous beam ABC is fixed at A and C. The span AB=8m carries a single concentrated load of 6.4kN at 5m from support A and BC=6m carries a concentrated load of 8kN at mid span. Moment of inertia is constant throughout the beam. Compute the bending moment using stiffness matrix method.


OR

b) Find the member forces of the pin jointed frame as shown in figure 13,K3,CO6 using stiffness matrix method.



PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Analyse the portal frame shown in figure by slope deflection method. 15,K3,CO4

b) Analyse the continuous beam ABCD shown in figure by slope 15,K3,CO4 deflection method. The support B sinks by 15mm. Take $E=200X10^5$ kN/m² and $I=120x10^{-6}m^4$

