		Reg.	No.													
	Ouestion Paper Co	de	13321													
		7 A N / TN					7 / 1	DE			4					
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024															
	Fifth Semester															
	Civil Engineering															
	20CEPC504 - STRUCTURAL ANALYSIS I															
	Regulations - 2020															
Du	ration: 3 Hours]	Max	. Ma	arks:	10	0
	PART - A (MCQ)	(20×1)	= 20]	Ma	rk	s)								<i>K</i> –		~~
	Answer ALL Questions						Mark	^s Leve	ı (20						
1.	What is static indeterminacy?												1	K1	C	201
	(a) Number of unknown reactions															
	(b) Number of external reactions minus number	of equi	libriu	m e	qu	atio	ns									
	(c) Number of redundants															
~	(d) Number of equilibrium conditions	C											1	VI	C	
2.	Kinematic indeterminacy is defined as the numb	(\mathbf{h}) up ly		~ * * *				:	~				1	K1	C	.01
	(a) aquilibrium aquations	(D) UNK	nown Indont	sup	ppc roo	ort re	act	1011	IS							
3	For a continuous beam with 3 spans and simple	equilibrium equations (d) redundant forces							1	K1	C	201				
5.	indeterminacy?	suppor	lo, wiid	at I	su		anc									
	(a) 2 (b) 1 (c) 3		(d) (0											
4.	The slope deflection equations relate moments a	at the er	nds of	me	mł	bers	to:						1	K2	C	202
	(a) Forces and displacements (b) Slopes and deflections															
	(c) Axial loads	Axial loads (d) None of the above														
5.	For a beam in equilibrium, the sum of moments	about any point is: 1					K1	C	:02							
	(a) Zero (b)) Equal	to the	ap	pli	ed lo	bad									
	(c) Equal to the support reactions (d)) None	of the	ab	ov	e							,	7/0		202
6.	The fixed end moment for a beam with a uniform (2) $\frac{1^2}{2}$ (2) $\frac{1^2}{2}$ (1) $\frac{1^2}{2}$ (1) $\frac{1^2}{2}$ (1) $\frac{1^2}{2}$ (1)	mly dis	stribute	ed I	loa	d W	per	ur.	nit I	eng	gth :	18:	1	K2	C	.02
7	(a) $WI / 8$ (b) $WI / I2$ (c) WI / I) wl ² / 8 (b) wl ² / 12 (c) wl ² / 16 (d) wl ² / 24 bet is the stiffness factor for a prime tick have fixed at both and 2							203							
7.	(a) $2EI/I$ (b) $3EI/I$ (c) AE	I IIXEU a I/I	u boui	CII	us	: (d)	6F	I/I					1		Ŭ	00
8	What is the carryover factor for a member fixe	ed at or	e end	an	d s	(u) simn	lv s		noi	ted	at	the	1	K1	С	203
0.	other end?	a at on	e ena	un	u	mp	1y .	Jup	Poi	icu	uı	une				
	(a) 0 (b) 0.5	(c) 1	.0				(d) 2	2.0							
9.	What does the distribution factor depend on?							,					1	K2	C	203
	(a) The material of the beam. (b) The me	oment	of iner	tia	an	d the	e sp	oan	of	the	bea	am.				
	(c) Only the span of the beam. (d) Only the	he mon	nent of	fin	ert	ia.										
10.	In the moment distribution method, support sett	tlement	s are a		our	nted	for	by	:				1	Kl	C	204
	(a) Increasing the stiffness of the members															
	(b) Introducing fixed-end moments due to settle.	ment														
	(d) Ignoring the settlement effects															
11	In the slope-deflection method, support settlem	ents are		inte	ьч	for l	w i	ntr	odı	icin	۰ <u>م</u> .		1	K1	C	204
11.	(a) Additional moments (b) Displacement terms in the slope-deflect				ecti	on	eau	is. Iatio	on							
	(c)Rotation terms only (d) Extra loads	at sup	orts	L		r- u	~ 1 1 4	1		- 90		~ * *				
12.	For a symmetric frame with skew-symmetric lo	bading,	the mo	ome	ent	s at	mic	l-st	oan	are	:		1	K2	C	204
	(a) Zero	(b) M	Iaximı	ım				1								
	(c) qual to the moments at supports	(d) T	wice t	he	mo	omei	nts	at s	sup	por	ts					

13.	What is the primary purpose of a flexibility matrix in structural analysis? (a) To evaluate structural strength			CO5					
	(b) To assess the adaptability of structures to various loads								
	(c) To calculate material costs (d) To determine sosthetic design								
14	Which of the following is NOT a component of a flexibility matrix?	1	K2	C05					
1 1.	(a) Structural element identification (b) Construction timeline								
	(c) Load application points (d) Support conditions								
15.	What type of analysis is typically used to create a flexibility matrix?	1	Kl	CO5					
	(a) Static analysis (b) Dynamic analysis (c) Thermal analysis (d) Fluid dynamics								
16.	5. Which analysis method helps assess the dynamic response of structures?								
17	(a) Static load analysis (b) Modal analysis (c) Thermal analysis (d) Linear analysis								
17.	(a) Polytionship between forces and displacements (b) Stress distribution	1	ΛI	000					
	(a) Kerationship between forces and displacements (b) Stress distribution (c) Load capacity (d) Safety factor								
18.	For a truss element, how many degrees of freedom are associated with each node?	1	K2	<i>CO6</i>					
	(a) 1 (b) 2 (c) 3 (d) 4								
19.	What is the typical size of the global stiffness matrix for a structure with 4 nodes, each	1	K2	<i>C06</i>					
	having 2 degrees of freedom?								
20	(a) 4×4 (b) 8×8 (c) 6×6 (d) 10×10	,	<i>V</i> 1	<i>CO6</i>					
20.	For a spring element, the stiffness matrix is a: (a) 1 μ 1 matrix (b) 2 μ 2 matrix (c) 2 μ 2 matrix (d) 4 μ 4 matrix	1	K I	000					
	(a) 1×1 matrix (b) 2×2 matrix (c) 3×3 matrix (d) 4×4 matrix								
PART - B $(10 \times 2 = 20 \text{ Marks})$									
Answer ALL Questions									
21.	Briefly explain Statically Indeterminate Structure and Static indeterminacy.	2	K2	<i>CO1</i>					
22.	Mathematically represent Degree of Indeterminacy and determine the Degree of	2	K2	<i>CO1</i>					
	Indeterminacy for a fixed beam?								
23.	What is slope deflection method?	2	Kl	<i>CO2</i>					
24.	What is meant by fixed end moment?	2	Kl	<i>CO2</i>					
25.	What is meant by moment distribution?	2	Kl	СО3					
26.	What is the use of distribution factors?	2	Kl	СО3					
27.	Explain how support settlement is accounted for in the Moment Distribution Method.	2	K2	<i>CO</i> 4					
28.	Explain the effect of support settlement on the carry-over moments in the Moment	2	Kl	<i>CO</i> 4					
	Distribution Method.								
29.	What is meant by indeterminate structures?	2	Kl	CO5					
30.	Define Degree of Freedom and explain its types.	2	Kl	<i>CO6</i>					

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) Analyze a two span continuous beam ABC with all the three supports are simply 10 K3 CO1 supported. AB = BC = 10 m. It is loaded with UDL of 5kN/m throughout the beam. Use strain Energy method. EI is constant.

OR

b) Determine the vertical displacement of joint A of the truss given in figure. The ¹⁰ K³ CO1 member BD is subjected to an increase in temperature of 80° C. Take the coefficient of thermal expansion as $0.00012/^{\circ}$ C and E=2x10⁵ N/mm². The cross-sectional area of each memberis1700 mm².

32. a) A continuous beam ABC consists of spans AB and BC of 5 m length in each. Both ¹⁰ K² CO² the ends of the beam are fixed. The span AB carries a point load of 15 kN at its middle point. The span BC carries a point load of 25 kN at its middle point. Find the moments and reactions at the supports. Assume the beam is of uniform section. Use Slope deflection method.

33. a) Analyse the continuous beam loaded as shown in Fig. by the method of moment ¹⁰ K³ CO³ distribution.

- b) A continuous beam ABC is simply supported at A, fixed at C and continuous over ¹⁰ ^{K3} ^{CO3} support B. The span AB is 6 m and carries a concentrated load of 60 kN at its midspan and the span BC is 8 m and carries a uniformly-distributed load of 10 kN/m. Take the flexural rigidity for portion AB as 2EI and that for portion BC as EI. Analyze the beam by moment distribution method and draw the shearing force and bending moment diagrams.
- 34. a) Analyse the continuous beam ABCD by slope deflection method and find the end ¹⁰ K³ CO⁴ moments. Support B sinks by 10 mm. $E = 2 \times 105 \text{ N/mm2}$ and $I = 16 \times 10^7 \text{ mm4}$ by slope deflection method

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

b) Analyse the portal frame shown in fig by the slope deflection method and draw ¹⁰ K³ CO⁴ BMD

35. a) Analyse the continuous beam ABC shown in figure by flexibility matrix method ¹⁰ K³ CO⁵ and sketch the bending moment diagram.

b) Analyse the continuous beam in fig, by flexibility method.

36. a) A two span continuous beam ABC is fixed at A and simply supported over the ¹⁰ K³ CO6 supports B and C. AB = 10 m and BC = 8 m. Moment of inertia is constant throughout. A single central concentrated load of 10 Tons acts on AB and a uniformly distributed load of 8 Ton/m acts over BC. Analyse the beam by stiffness matrix method.

b) A portal frame ABCD with supports A and D are fixed at same level carries a 10 K3 CO6 uniformly distributed load of 2 tons/m on the span BC. Span AB = BC = CD = 4 m. EI is constant throughout. Analyse the frame by stiffness matrix method.

10

K3 CO5