		Reg. No.										
	Question Paper Code		12878									
	B.E. / B.Tech DE	GREE EXAMINA	ATIO	NS, A	PRIL	/ N	IAY	202	4			
		Fifth Semes	ter									
		Civil Enginee	ring									
	20CEPC :	504 - STRUCTUR	AL A	NAL	YSIS	I						
		Regulations - 2	2020									
Duration: 3 Hours Ma								lax.	ax. Marks: 100			
PART - A (10 \times 2 = 20 Marks) Answer ALL Ouestions							Marks ^{K–} Level CO					
1.	Give example of beam with one degree indeterminacy.								2	K2	CO	!
2.	How to determine kinematic indeterminacy of a structure?							2	K2	CO	!	
3.	What are the assumptions made in slope-deflection method?							2	Kl	CO2	?	
4.	Write down the slope deflection equation for a beam AB fixed at A and B subjected to a settlement δ at B.							2	K1	<i>CO2</i>	?	
5.	What is distribution factor? Explain.								2	Kl	COE	3
6.	Vhat is the difference between absolute and relative stiffness?							2	Kl	COE	3	
7.	What is a primary structure in matrix flexibility method?							2	Kl	COS	5	
8.	Write the element flexibility matrix for a beam member.								2	Kl	COS	5
9.	What are the properties of stiffness matrix?								2	Kl	CO	5
10.	What is displacement method of analysis?							2	Kl	CO	5	

PART - B (5 × 13 = 65 Marks) Answer ALL Questions

11. a) Solve using strain energy method.

b) Solve using strain energy method.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13 K3 CO1

13 K3 CO1

12. a) Solve using Slope Deflection Method.

b) Analyze the portal frame ABCD shown in figure by slope deflection $13 K_3 CO_2$ method. Take EI = constant.

13. a) Analyze the beam shown in figure by moment distribution method and $I_3 K_3 CO_3$ draw the SFD and BMD. Take EI = constant.

b) Analyze the structure loaded as in figure by using moment distribution ¹³ K³ CO³ method.

13 K3 CO5

13 K3 CO2

Analyze using Matrix flexibility method.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12878

b) Analyse using Matrix flexibility method.

20 kN/m

6 m

15. a) Analyze using Matrix stiffness method.

 $6.4 \text{ kN} \qquad \qquad 8 \text{ kN} \qquad \qquad 8 \text{ kN} \qquad \qquad \\ \hline A \qquad \qquad B \qquad \qquad C \qquad \qquad \\ \hline - 5 \text{ m} \qquad - 5 \text{ m} \qquad - 3 \text{ m} \qquad - 3 \text{ m} \qquad - 3 \text{ m} \qquad - 5 \text{ m} \qquad - 3 \text{ m} \qquad - 5 \text{ m} \qquad - 3 \text{ m}$

B

120 kN

6 m

3 m

PART - C (1 × 15 = 15 Marks)

16. a) Analyse the continuous beam ABCD shown in figure by slope ¹⁵ K3 CO4 deflection method. The support B sinks by 10mm. Take $E = 2X10^5$ N/mm² and I = $16x10^7$ mm⁴.

b) Analyse the continuous beam ABCD shown in figure by slope ¹⁵ K3 CO4 deflection method. The support B sinks by 15mm. Take $E = 200 \times 10^5$ kN/m² and $I = 120 \times 10^{-6}$ m⁴

13 K3 CO6