	Re	eg. No.										
	Question Paper Code	12623				- 1						
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024												
Sixth Semester												
Civil Engineering												
20CEPC601 - DESIGN OF STEEL STRUCTURES												
Regulations - 2020												
(Use of IS 800-2007 Code book and Steel Table books are permitted)												
Dı	aration: 3 Hours					Ν	lax.	Ma	arks:	100		
	PART - A $(10 \times 2 = 20 \text{ M})$ Answer ALL Ouestic	Marks) ons					М	arks	K – Level	со		
1.	What are the types of structural steel?						2	K1	COI			
2.	List the mechanical properties of Steel.							2	K1	<i>CO1</i>		
3.	Define structural connection.							2	K1	<i>CO2</i>		
4.	What are the various types of connections used fo members?	or connec	cting	g the	strı	ictura	al	2	K1	<i>CO2</i>		
5.	Summarize the formula for design strength du section.	ue to yi	eldi	ng o	of c	critica	al	2	K1	СО3		
6.	Discuss Shear Lag in Tension member.							2	K2	CO3		
7.	Define compression member.							2	K1	<i>CO4</i>		
8.	Describe the effective length of column based on	end con	ditio	n.				2	K2	<i>CO4</i>		
9.	What is laterally supported beam?							2	K1	<i>CO5</i>		
10.	List the various components of a roof truss.							2	K1	<i>CO6</i>		
	PART - B $(5 \times 13 = 65 \text{ M})$	Marks)										

Answer ALL Questions

11. a) Explain about types of loads on structures and load combinations. 13 K2 CO1

OR

- b) Draw a typical stress-strain for mild steel and explain the salient ¹³ K2 CO1 points on it and also discuss about the different structural steel products.
- 12. a) Design a lap joint between the two plates each of width 120mm, if the ¹³ K³ CO² thickness of one plate is 16 mm and the other is 12 mm. The joint has to transfer a design load of 160kN. The plates are of Fe 410 grade. Use bearing type plates.

OR

b) Design a butt joint to connect two plates 150 mm x 12 mm .Use M16 ¹³ ^{K3} ^{CO2} bolts of grade 4.6. Find the efficiency of the joint.

12623

13. a) Design a splice to connect a 300 x 20 mm plate with another plate ¹³ K³ CO³ 300 x 10 mm. Design load is 600 KN. Use 20 mm bolts of shop prefabrication. Assume the joint as butt joint.

OR

- b) Design tensile strength of roof truss diagonal 100x75x8mm connected ¹³ K³ CO³ to gusset plate by 5mm width. Assume length of weld at top is 130mm and 300mm. Also assume thickness of gusset plate as 10mm.
- 14. a) Design a slab base for a column ISHB at 588 N/m carrying an axial ¹³ K³ CO⁴ load of 1000 KN. M20 concrete is used for the foundation. Provide welded connection between column and base plate.

OR

- b) Design a single angle strut connected to the gusset plate to carry a ¹³ K³ CO⁴ 200 KN factored load. The length of strut between centre to centre is 4 m.
- 15. a) Explain the design procedure for Laterally supported beam with ¹³ K³ CO⁵ necessary formulae.

OR

b) Design a welded plate girder of span 26m to carry super imposed load ¹³ K³ CO⁵ of 40KN/m. Avoid use of bearing and intermediate stiffeners. Use Fe 415 (E250) Steel.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16.	a) i)	Explain the design procedure of gantry girder.	8	K2	<i>CO6</i>
	ii)	Explain the different types of roof truss with neat sketches.	7	K2	<i>CO6</i>
		OR			
	b)	Design angle section purlin for an industrial building to support a	15	K2	<i>CO6</i>
		galvanised corrugated iron sheet with the following data			
		1. Spacing of truss $= 4m$			
		2. Inclination of main rafter= 30°			

- 3.Spacing of purlin= 1.5 m
- 4. Weight of purlin= 1.5m
- 5. Weight of corrugated sheeting = 150 N/m^2
- 6. Live load = 0.6 KN/m^2
- 7. Yield stress of steel = 250 Mpa.