		Reg. No.										
	Question Paper Cod	le	130	12								
	B.F. / B.Tech DEGREE EX	AMINATI	ONS	. N(\mathbf{V}	DEC	202	4				
	Sixth	Semester	0110	,		DLU		•				
	Civil Fr	nginaaring										
					те ті							
	20CEPC003 - SIRUC		ANAI		15 11							
_	Regulati	100 - 2020						_	_		-	
Du	ration: 3 Hours							Μ	lax. l	Marl	ks:	100
	PART - A (MCQ) (2	$20 \times 1 = 20$	Mar	ks)					Mar	ks I	K	со
	Answer ALL	Questions	· ·	1						~ Lo	evel	<i>co</i> 1
1.	The influence line for bending moment at a give	en section o	t a si	mpl	y sup	porte	d be	am 1s	Ι	1	Χ2	COI
	typically:											
	(a) A straight line (b) A parabolic curve											
	(c) A triangle with zero values at supports and ma	aximum at	the se	ectio	n							
	(d) Constant along the span											
2.	In the case of a concentrated moving load on a sig	mply suppo	orted	bean	n, wł	nere w	rill t	he	1	1	K2	CO1
	maximum bending moment occur?											
	(a) Near the supports ((b) At the m	nidpo	int o	of the	beam						
2	(c) At the point of application of the load ((d) Uniform	ıly di	strib	uted	along	the	span	,	,	22	<i>c</i> 01
3.	In a simply supported beam, where is the maximi	um influenc	e for	the	react	ion at	the	left	1	1	\$2	COI
	support located?	h) At the m	idnoi	nt o	f tha	haam						
	(a) At the left support (a)	d) Uniform	alon	n the	i uic beai	n n						
4.	For a simply supported beam with a moving unif	orm load. tl	he ab	solu	te ma	iximu	m		1	1	K2	CO2
	bending moment occurs at:											
	(a) The supports (b)	o) The midp	ooint									
	(c) The one-third span (d	l) The end o	of the	load	d's po	ositior	1					
5.	In an influence line for bending moment in a sim	ply support	ed be	eam,	the r	naxim	num		1	1	K2	<i>CO2</i>
	influence occurs when the load is positioned:			<u>.</u> .								
	(a) Close to the point of interest (b) At the po	oint o	fint	erest							
6	(c) At the midpoint (d	d) At any p	OSITIC	on ant	dua t	a a di	-+i la	utad	1	,	82	co^{2}
o. 7.	load occurs:	in bending	mom	ent	uue u	o a un	strio	utea	1	1	12	002
	(a) At the support (b) At midspan (c) At quart	ter span	d) Ar	wwł	nere a	long	the 1	neam				
	For a continuous beam with one degree of redund	dancy, when	re is t	he n	naxin	num i	nflu	ence	1	1	K2	CO3
	on the bending moment likely to occur?	<i>,</i> ,										

(b) At the fixed or continuous supports

(d) At the midpoint of the entire beam

(b) A unit vertical displacement at the section (c) A unit horizontal displacement at the section (d) A combination of horizontal and vertical displacements 9. In a propped cantilever beam, the influence line for the reaction at the prop shows: (a) A straight line with zero values at both ends

8. According to Muller-Breslau's principle, to draw the influence line for a bending

(b) A positive and negative region, reflecting support reactions

moment at a section, what type of displacement is applied?

- (c) Only a positive region, representing upward support reaction
- (d) A parabolic curve due to the fixed support

(a) At the center of the span

(c) Near the midpoint of any span

(a) A unit rotation at the section

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13012

K2 CO3

K2 CO3

1

1

10.	In a two-hinged arch, the degree of static indeterminacy is typically:						
11.	(a) Zero (b) One (c) Two (d) Three Which type of arch can resist both horizontal and vertical loads while allowing some						
	degree of rotation at the supports?						
12.	Which type of arch is best suited for resisting large temperature variations without	1	K2	<i>CO4</i>			
12.	inducing significant stress?						
	(a) Fixed arch (b) Two-hinged arch (c) Three-hinged arch d) Hingeless arch						
13.	In the equilibrium of a cable, the shape of the cable under a uniformly distributed load is	1	K2	<i>CO5</i>			
	generally:						
	(a) Parabolic (b) Circular (c) Triangular (d) Straight			<i>a</i>			
14.	The length of a suspension cable between two supports depends primarily on:	Ι	K2	<i>CO</i> 5			
	(a) The material of the cable (b) The span length and sag (d) The inclination of the suprosets						
15	(c) The wind loads acting on the cable (d) The inclination of the supports	1	К2	<i>CO</i> 5			
15.	the cable is:						
	(a) Maximum at the supports (b) Maximum at the midpoint						
	(c) Zero at the supports (d) Constant throughout						
16.	What is the effect of temperature changes on a cable with a three-hinged stiffening	1	K2	<i>CO5</i>			
	girder?						
	(a) No effect on cable forces						
	(b) Only affects the girder's support reactions						
	(c) Can be accommodated without inducing large additional stresses						
17	(d) Causes excessive bending moments in the cable	1	VI	<i>CO</i> (
1/.	For a circular cross-section, the shape factor is typically: (a) 1.5 (b) 1.7 (c) 2.0 (d) 1.0	1	ΛI	000			
18	(a) 1.3 (b) 1.7 (c) 2.0 (d) 1.0 The shape factor of a cross section is the ratio of:	1	K2	C06			
10.	(a) Plastic modulus to elastic modulus (b) Plastic moment to yield moment	1	112	000			
	(c) Yield moment to plastic modulus (d) Flastic moment to plastic moment						
19.	The point at which a structure forms a sufficient number of plastic hinges to become a	1	K2	<i>CO6</i>			
	mechanism and collapse is known as:						
	(a) Yield load (b) Collapse load (c) Service load (d) Ultimate load						
20.	In plastic analysis of a two-span continuous beam, the minimum number of plastic	1	K1	<i>CO6</i>			
	hinges required for collapse is:						
(a) One (b) Two (c) Three (d) Four							
	$PART - B (10 \times 2 = 20 \text{ Marks})$						
21	What are the shapes obtained in influence lines for bending moment at the same location	2	К2	CO1			
21.	on a beam?	2	112	001			
22.	2. Draw the influence line for a support reaction for simply supported beam subjected to a						
	unit load.						
23.	List two key factors that influence the value of the absolute maximum bending moment	2	K1	<i>CO2</i>			
	in a beam subjected to moving loads.						
24.	What is meant by the term "absolute maximum bending moment" in the context of	2	K1	CO2			
	structural analysis?	•		<i>a</i> 01			
25.	What is a propped cantilever, and how does it differ from a simply supported beam in	2	K2	003			
26	terms of support conditions?	2	K?	<i>CO</i> 3			
20.	now do intermediate supports in continuous beams affect the distribution of bending moments and support reactions compared to a simple beam?	2	Π2	COJ			
27	List out the types of arches used in construction	2	<i>K1</i>	<i>CO4</i>			
27.	List two advantages of using parabolic arches in structural design compared to circular	2	K1	<i>CO</i> 4			
∠0.	arches.	-					
29.	Calculate the length of the cable having the span of 20m and dip of 2.5m.	2	K2	CO5			
30	Determine the shape factor for Rectangular section having breath b & denth d	2	K2	<i>CO6</i>			
KI	– Kemember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2		13	012			

PART - C ($6 \times 10 = 60$ Marks)

Answer ALL Questions

31. a) Determine maximum shear force and maximum bending moment at quarter span 10 K3 CO1 from left end when a uniformly distributed load longer that the span of intensity 20kN/m, accompanied by a 100kN concentrated load crosses the span of 12m. Use influence lines, the concentrated load can occupy any position.

OR

- b) Draw the influence line diagram for bending moment at a point 10m distance from ¹⁰ ^{K3} ^{CO1} the left-hand abutment on a bridge girder of span 25m. Find the maximum bending moment at the point due to a series of wheel loads 100kN, 200kN, 200kN at center to center distance of 4m, 2.5m and 2.5m. The loads can cross in either direction, 100kN load leading in each case.
- 32. a) Draw ILD for forces in P and Q

- OR
- b) Draw the influence line diagrams for the forces in the members U_1L_2 of the truss ¹⁰ K3 CO2 shown in Fig. Determine the maximum forces in these members when uniformly distributed load of intensity 8kN/m and length 5m traverses the span.

33. a) Using Muller-Breslau principle, compute the influence line ordinates at 1m ¹⁰ ^{K3} ^{CO3} interval for bending moment and shear force of Propped cantilever beam having the span of 6m.

OR

- b) Using Muller-Breslau principle, compute the influence line ordinates at 2m ¹⁰ ^{K3} ^{CO3} interval for bending moment and shear force of two span continuous beam having the span of AB=6m, BC=4m. Support A is hinged and B&C are roller supports.
- 34. a) A three-hinged circular arch hinged at the springing and crown points has a span ¹⁰ ^{K3} ^{CO4} of 40m and a central rise of 8m. It carries a uniformly distributed load of 20kN/m over the left-half of the span together with a concentrated load of 100kN at the right quarter span point. Find the reactions at the supports, normal thrust and shear at a section 10m from left support.

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13012

10 K3 CO2

- b) A two-hinged symmetric parabolic arch of span 40m and rise 5m is subjected to ¹⁰ K³ CO⁴ rolling loads. Determine the maximum moment at a section 10m from the left support due to a concentrated load of 40kN at 10m from the left support.
- 35. a) A cable is suspended from the points A and B which are 80m apart horizontally ¹⁰ ^{K3} ^{CO5} and are at different levels, the point A being 5m vertically higher than the point B and the lowest point in the cable is 10m below A. The cable is subjected to a uniformly distributed load of 30kN/m over the horizontal span. Determine the horizontal and vertical reactions at each end and also the maximum tension in the cable.

OR

- b) A light flexible cable 18m long is supported at two ends at the same level. The ¹⁰ K3 CO5 supports are 16m apart. The cable is subjected to uniformly distributed load of 1kN/m of horizontal length over its entire span. Determine the reactions developed at the support.
- 36. a) Calculate the shape factor of the I-section shown in Fig 3. If the value of the yield 10 K3 CO6 stress is 250N/mm², find the plastic moment capacity of the section.

b) Determine the collapse load in case of a fixed beam shown in Fig 4.

10 K3 CO6

