		Reg. No.									
	Question Paper Code	1257	8								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024											
Seventh Semester											
Civil Engineering											
20CEPC702 - ADVANCED REINFORCED CONCRETE STRUCTURES											
	Regulations	- 2020									
	(Use of IS 456:2000, IS 800:2007, IS	3370, Steel	l Ta	ble a	are j	peri	nitte	d.)			
Du	ration: 3 Hours						Max	. Ma	ırks:	10	0
	PART - A (10 × 2 = Answer ALL Qu	20 Marks) uestions						Mark	K– S Leve	el C	0
1.	Define characteristic strength of concrete.							2	K1	CC	21
2.	Summarize active earth pressure & passive ea	rth pressure						2	K2	CC	21
3.	What are the types of joints in water tanks?							2	K1	CC	72
4.	Mention the three factors that must be constank.	idered while	e de	esign	ning	a	RCC	2	K2	CC	72
5.	Define flat slab.							2	K1	CC)3
6.	List the types of mat foundations.							2	K1	CC	74
7.	State the assumption of yield line theory.							2	K1	CC)5
8.	What are the two methods of determining reinforced concrete slabs?	the ultimat	te lo	oad	cap	acit	ty of	2	K1	CC)5
9.	Summarize what type of structures requires sh	near wall con	nstr	uctio	on.			2	K2	CC	<i>D6</i>
10.	List the types of shear wall.							2	K1	CC	<i>)6</i>

PART - B ($5 \times 13 = 65$ Marks)

Answer ALL Questions

11. a) Design the stem of a cantilever retaining wall to retain earth ¹³ K² CO1 embankment 4m high above ground level. The unit weight of earth is 16kN/m² and its angle of repose is 30 degree. The embankment is horizontal at its top. The safe bearing capacity of soil is 100KN/m² and the co-efficient of friction between soil and concrete is 0.6. Adopt M20 concrete and Fe415 steel.

OR

b) Design a counter fort type retaining wall to suit the following data: ¹³ K2 CO1 Safe bearing capacity of soil = 200kN/m², Height of the soil above GL = 7m, Unit weight of soil = 18 KN/m², Angle of internal friction = 30degree, Spacing of counter fort = 3m centers, Grade of concrete = M20, Grade of steel = Fe 415 HYSD bars.

12578

12. a) Design a circular water tank with fixed base for capacity of 400000 ¹³ K² CO² litres. The depth of water is to be 4m. Free board = 200 mm. Use M_{20} concrete and Grade I mild steel. Permissible stress in concrete and steel are 1.2 N/mm² and steel 100 N/mm² respectively. Sketch the details of reinforcement.

OR

- b) Design a circular tank with flexible base for capacity of 400000 liters. ¹³ K2 CO2 The depth of water is to be 4.5m; including a free board of 200mm. Overall height of the tank is restricted to 4m. Use M₂₅ grade concrete and Fe415 grade steel.
- 13. a) Design an interior panel flat slab with panel size 5.5m x 5.5m and size ¹³ K² CO³ of the floor 30m x 30m. Provide suitable drops. Take live load as 4.5 KN/m². Use M20 grade of concrete Fe415 steel.

OR

- b) Explain briefly about the different types of staircases with neat ¹³ K3 CO3 sketches.
- 14. a) Explain the step by step design principles & load considered in ¹³ K² CO⁴ reinforced concrete road bridges.

OR

- b) Explain the step by step design principles of Mat foundation. 13 K2 CO4
- 15. a) A square interior panel of an intermediate floor is of effective ¹³ K² CO⁵ dimension 5m×5m. The live load on the floor is 2.5KN/m². Finishes is 1 KN/m². Analyze the slab using yield line approach and design the slab. Use M20 grade Concrete and Fe415 Steel.

OR

b) Design a circular slab of 5m diameter, simply supported along the ¹³ K² CO5 edges to carry a service load of 4.5KN/m². Adopt M ₂₀ grade concrete and Fe ₄₁₅ steel. Use equilibrium method for analysis.

PART - C $(1 \times 15 = 15 \text{ Marks})$

a) Design a reinforced concrete wall with height of 4m and thickness of ¹⁵ K3 CO6 250mm. The loads applied to wall is 250KN/mm² length of the wall is 3.5m. Adopt M20 grade of concrete and Fe415 steel.

OR

b) Explain briefly about bar bell type (simple rectangular type) shear wall ¹⁵ K2 CO6 with sketches.