Reg. No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12488

B.E. / **B.Tech.** - **DEGREE EXAMINATIONS, NOV / DEC 2023**

Third Semester

Computer Science and Engineering (IoT) 20CIPC301 - COMPUTER ARCHITECTURE AND MICROCONTROLLERS

20CIFC301 - COMIFUTEN ANCHITECTUNE AND MICROCONT

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions

1.	Define Computer Architecture.	Marks, K-Level, CO 2,K1,CO1
2.	Express the MIPS code for the statement $f = (g+h)-(i+j)$.	2,K2,CO1
3.	What is sub-word parallelism?	2,K1,CO2
4.	Give the IEEE standard floating point formats for single precision.	2,K1,CO2
5.	Define Data path.	2,K1,CO3
6.	State the use of sign extend unit.	2,K2,CO3
7.	Mention the features of 8051 microcontroller.	2,K1,CO4
8.	Compare program memory and data memory.	2,K2,CO4
9.	Write the function of PUSH and POP instruction in 8051.	2,K2,CO5
10.	What is the use of a watch dog timer?	2,K1,CO5

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Explain the basic addressing modes with an example for each used in 13,K2,CO1 MIPS.

OR

- b) Explain the steps to convert the following high level language such as ^{13,K2,CO1} C into a MIPS code. A [300] = h + A[300].
- 12. a) Explain the fixed point Division algorithm with a neat diagram.

 13,K2,CO2

 OR
 - b) Explain the floating point multiplication for the following 0.5 $_{10}$ and 13,K2,CO2 0.4375 $_{10}$.
- 13. a) Explain the operation and control signals used in data path of I-type 13,K2,CO3 instructions in detail.

OR

- b) Explain Control hazards and stalls with a neat diagrams and suitable 13,K2,CO3 examples.
- 14. a) Explain the memory organization of 8051 Microcontroller with a neat 13,K2,CO4 diagram.

OR

- b) Explain the functions of the following signals RST, EA, PSEN and 13,K2,CO4 ALE used in 8051.
- 15. a) Explain the different modes of operation of timers/counters in 8051 13,K2,CO5 with its associated register.

OR

b) Explain in detail about different steps to receive data serially using 13,K2,CO5 8051.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) With necessary hardware & software details explain how to interface 15,K2,CO6 LCD with 8051.

OR

b) How do you interface an 8051 microcontroller with a keyboard? 15,K2,CO6 Explain in detail.