				Γ	Reg. No.												
		Ouestion Paper Code 12354						I	1	<u> </u>	1						
			- Zuosoion	- 			-										
		B.E. / B.]	Tech - DEG	REE EXA	MINAT	ION	IS,	NO	V	/ DE	C 20)23	6				
			C	Fifth S	Semester	- F.				~							
		20CSFL5	Computer a	ING COMI WARFH(nunicatio	n El AN	ngi D	пее П А'	rin T A	Ig MI	NIN	G					
		2005115	01 - DINIIX	(Regulati	ons 2020)		DI	111			U					
Duration: 3 Hours Max Mark										cs: 10	00						
			PAR	T - A (10 :	$\times 2 = 20$ M	Aar	ks)										
			A	Answer AL	L Questio	ons											
														Ма K-Le	irks, vel, CC		
1.	Wh	at is a Data V	Vare House											2,KI	,CO1		
2.	Def	fine Multidim	ensional Da	tabase.										2,K1,CO1			
3.	Def	fine Data min	ing.											2,K1,CO2			
4.	Name the steps in the process of knowledge discovery.									2,K1,CO2							
5.	Define frequent patterns.									2,K1,CO3							
6.	Define Support and Confidence.									2,K1,CO3							
7.	State classification.									2,K1,CO4							
8.	Define Clustering.									2,K1,CO4							
9.	List the WEKA data formats.									2,K1,CO6							
10.	Define Auto Imports in WEKA.										2,K1	, <i>CO</i> 6					
			PAR	T - B (5 ×	13 = 65 N	Aar	ks)										
1 1	`		<i>I</i>	Answer AL	L Questio	ons								12 V	2 COL		
11.	a)	Differentiate	e between U	LAP and (JLIP.									1 <i>3</i> ,K	2,001		
	1)	XX7 '4 41 4			• 1 / •	1.	51			1				12 V	2 COL		
	b)	Write the ty	pes of OLA	P operation	is in detai	l Wi	th	exai	mp	les.				13,K	2,001		
12.	a)	Explain the	Various Dat	a objects a	and Attrib	utes	in	deta	ail.					13,K	2,CO2		
				OI	R												
	b)	Briefly exp methods.	lain about	Measuring	; Data Si	mil	arit	y a	ınd	Dis	simi	lar	ity	13,K	3,CO2		
13.	a)	Explain the	Apriori aloc	orithm with	suitable	exa	np	le.						13,K	3,CO3		
)	p	p-1011 wig(OI	{		P										
				51													

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12354

	b)	Consider the Following Transaction. $T1 = \{ I1,I3,I6 \}, T2 = \{ I2,I3,I5,I6 \}, T3 = \{ I1,I2,I3,I5 \},$ $T4 = \{ I2,I5 \}, T5 = \{ I1,I3,I5 \}$ List all the Frequent Item set using FP-Growth Algorithm.	13,K3,CO3
14.	a)	Discuss about basic decision tree induction algorithm.	13,K3,CO4
	b)	Explain briefly about the Naïve Bayesian Classification.	13,K3,CO4
15.	a)	(i) Describe Iris Plant Dataset.(ii) Describe Breast cancer Data set.OR	6,K2,CO6 7,K2,CO6
	b)	How classification algorithms are modeled in WEKA tool?	13,K2,CO6

PART - C (1 × 15 = 15 Marks)

16. a) Suppose that the data mining task is to cluster the following eight points ^{15,K3,CO5} (with (x,y) representing location) into three clusters. A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8),B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9).
Suppose initially we assign A1, B1, and C1 as the center of each cluster respectively. Use the K-Means algorithm to show only the three cluster centers after the first round of execution and The final three clusters. (Consider The distance function as Manhattan distance)

b) Explain hierarchical clustering in detail with an example. Draw the ^{15,K3,CO5} dendrogram using hierarchical clustering algorithm.