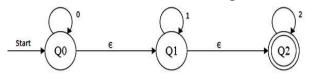
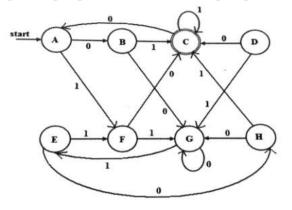

						<u> </u>		-				
		Reg	. No.									
	Question Paper Code			12397								
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023												
Fifth Semester												
Computer Science and Engineering (Common to M.Tech Computer Science and Engineering (5 Years Integrated))												
	20CSPC502 - THEOR		•		•	`		5 1110	egra	ileu,	9	
	(Regula			II U	IAI		1					
Dur	ation: 3 Hours		2020)					Max	x. M	larks	s: 10)()
2	PART - A (10 Answer Al)							
1.	Show by Induction 1+2+3+n =									ŀ		rks, el, CO ,CO1
2.	Illustrate a DFA for the Language $L = \{0^n / n \mod 3 = 2, n \ge 0\}$.								2,K2	,CO1		
3.	Illustrate a regular expression for the set of all strings over $\{a,b,c\}$ with any number of a's followed by any number of b's followed by any number of c's.				•	2,K2	,CO2					
4.	Illustrate an FA for the Regular express	ssion	(00+(0	+1))	1*.						2,K2	,CO2
5.	Define Grammar and its types.			//							2,K1	,CO3
6.	Describe a CFG for the following the	langı	iage L	={wv	w ^R /	w∈	:{0,1	}*}			2,K2	,CO3
7.	Describe null production and unit production	ductio	n? Giv	ve an	exa	mpl	le.				2,K1	,CO4
8.	Define Greibach Normal Form (GNF)	and i	ts gen	eral f	òrm	•					2,K1	,CO4
9.	Define the classes of P and NP.										2,K1	,CO6
10.	State when a problem is said to be o	decida	able ar	nd gi	ve a	ın e	xam	ple	of a	an	2,K1	, <i>CO</i> 6

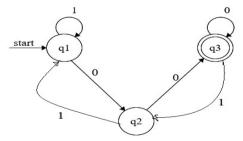
PART - B (5 × 13 = 65 Marks)


undecidable problem.

Answer ALL Questions


11. a) Convert the following NFA to a DFA using the subset construction ^{13,K2,CO1} algorithm.

b) Illustrate an NFA without ε -transitions for the given NFA.



12. a) Construct minimized automata for the following automata to define the ^{13,K3,CO2} same language using Equivalence Partitioning Algorithm.

OR

b) Construct a regular expression by converting the Finite Automata ^{13,K3,CO2} using the State elimination Method.

13. a) Construct PDA to accept the language $L=\{0^n1^n / n \ge 1\}$ accepting by ^{13,K3,CO3} final state. Also check the string "0011" and "011" by instantaneous description.

OR

b) Convert the given PDA to a Context Free Grammar (CFG) $M=(\{q_0, q_1\}, \{0,1\}, \{X,Z_0\}, \delta, q_0, Z_0, \Phi)$ and where δ is given by $\delta(q_0, 0, Z0) = \{(q0, XZ_0)\},$ $\delta(q_0, 0, X) = \{(q0, XX)\},$ $\delta(q_0, 1, X) = \{(q1, \epsilon)\},$ $\delta(q_1, 1, X) = \{(q1, \epsilon)\},$ $\delta(q_1, \epsilon, Z_0) = \{(q1, \epsilon)\}.$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12397

13,K2,CO1

14. a) Identify Greibach Normal Form (GNF) for the following grammar. 13,K2,CO4

 $S \rightarrow AB$ $A \rightarrow BS / b$ $B \rightarrow SA / a$

OR

b) Identify and eliminate the useless symbols, Epsilon production, Unit ^{13,K2,CO4} Productions for the following Grammar and determine the Chomsky Normal Form (CNF).

 $S \rightarrow 0A0 / 1B1 / BB$ $A \rightarrow C$ $B \rightarrow S / A$

15. a) Compare Recursive and Recursive Enumerable languages with an ^{13,K2,CO6} example. Also describe RICE theorem.

OR

b) Explain about the tractable and intractable problems. Also Discuss *13,K2,C06* about MPCP problem

i	List A (Wi)	List B (Xi)	
1	10	10	
2	110	11	
3	11	011	

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Construct a TM to accept the language $L = \{a^n b^n c^n | n \ge 1\}$.

OR

b) Construct a Turing Machine(TM) to accept palindromes of odd length ^{15,K3,CO5} in an alphabet set $\sum = \{a,b\}$. Trace the strings "ababa".