		Reg. No.																
--	--	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code13095

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Sixth Semester

Computer Science and Engineering

(Common to Information Technology & Seventh Semester - Electronics and Communication Engineering)

20CSPC601 - ARTIFICIAL INTELLIGENCE

Regulations - 2020

Dı	aration: 3 Hours Max	. Mar	ks: 1	00
	PART - A (MCO) ($20 \times 1 = 20$ Marks)		<i>K</i> –	
	Answer ALL Questions	Marks	Level	С0
1.	What is the primary objective of problem formulation in AI?	1	K1	<i>CO1</i>
	(a) Finding the best algorithm			
	(b) Generating random solutions			
	(c) Defining the problem clearly and precisely			
	(d) Implementing complex neural networks			
2.	Which search strategy explores nodes at the deepest level of the search tree first before	1	K1	<i>CO1</i>
	backtracking?			
	(a) Depth-first search (b) Breadth-first search (c) Uniform-cost search (d) Greedy search			
3.	A environment is one in which actions are characterized by their possible	1	K2	<i>CO1</i>
	outcomes, but no probabilities are attached to them.			
	(a) Deterministic (b) Nondeterministic (c) Episodic (d) Sequential			
4.	Infer the role of the energy function in Simulated Annealing.	1	K2	<i>CO2</i>
	(a) To define the probability distribution of the search space			
	(b) To evaluate the quality of the proposed solution			
	(c) To determine the rate at which the temperature decreases			
	(d) To define the acceptance probability for each iteration of the algorithm			
5.	The requirements to solve a constraint satisfaction problem are and	1	K2	<i>CO2</i>
	(a) Start State, Goal State (b) Start State, State Space			
	(c) State Space, Notion of Solution (d) None of the Mentioned			
6.	A CSP is if it is k-consistent and is also $(k - 1)$ -consistent, $(k - 2)$ -consistent,	1	K2	<i>CO2</i>
	all the way down to 1-consistent.			
	(a) Strongly k-consistent (b) Weakly k-consistent			
	(c) Strongly 1-consistent (d) Weakly 1-consistent			
7.	Which is the best way to go for Game playing problem?	1	K1	СО3
	(a) Linear approach (b) Heuristic approach			
	(c) Random approach (d) An Optimal approach			
8.	Interpret the time complexity of the minimax algorithm when the maximum depth of the	1	K2	CO3
	tree is "m" and there are "b" legal moves available at each node?			
	(a) $O(mb)$ (b) $O(bm)$ (c) $O(b^{m})$ (d) $O(m)$			~ ~ •
9.	Which of the following technique allows the correct Mini-Max decision to be computed	Ι	KI	<i>CO3</i>
	without examining every node of the game tree?			
	(a) Cutting (b) Pruning (c) Hatching (d) Removing			~~ .
10.	Which of the following is an example of a first-order logic representation?	Ι	KI	CO4
	(a) Predicate Calculus (b) Fuzzy Logic (c) Propositional Logic (d) Modal Logic	,	W2	<i>co</i> :
11.	Illustrate the logical representation of the sentence "All dogs have tails"?	1	K2	CO4
	(a) $\forall \text{ dog(tails)}$ (b) $\forall \text{ tails(dog)}$ (c) $\forall x (\text{dog}(x) \rightarrow \text{hasTail}(x))$ (d) hasTail(dog)			

12.	 2. A good solution in "intelligent" machines depends on (a) A neural network's design challenge (b) A neural network's representation of knowledge (c) The availability of labeled examples (d) The elimination of sensor noise 					
13.	 3. Consider a scenario: A simple planning agent is tasked with preparing breakfast, consisting of making toast and brewing coffee. What stage of the agent's planning process involves identifying the initial state and defining the goal state? (a) Execution stage (b) Learning stage 					
	(c) Goal-setting stage (d) Problem formulation stage					
14.	Relate the rule applied in Simple Planning Agent.	1	K2	<i>CO</i> 5		
15	(a) Action (b) Condition-Action Rule (c) Goal Plan Rule (d) None of the Mentioned The process by which the brain incrementally orders actions needed to complete a	1	К2	CO5		
15.	specific task is referred as					
	(a) Planning problem (b) Partial order Planning					
	(c) Total order planning (d) Both planning problem and partial order planning					
16.	In once a statement is proven to be true in first-order logic, it remains	1	K1	CO5		
	true always					
	(a) Logical Inference Problem (b) Situation Calculus					
	(c) Frame Problem (d) All of the Mentioned					
17.	Identify the purpose of intent recognition in Chatbot development.	1	K3	<i>CO6</i>		
	(a) Identifying the emotions of the user (b) Recognizing the intentions behind user inputs					
10	(c) Converting speech to text (d) Generating random responses	,	W2	000		
18.	Select the NLP task that involves converting spoken language into written text	1	Κ3	000		
	(a) Named Entity Recognition (NER) (b) Sentiment Analysis (c) Speech Decognition					
10	Application of unigram is	1	K1	C06		
19.	(a) Sentiment analysis (b) Speech recognition (c) Tokenizing (d) Information retrieval			000		
20.	How the sentences are converted to unigrams?	1	Kl	<i>CO</i> 6		
_0.	(a) By splitting the sentences into letters					
	(b) By splitting the sentences into words					
	(c) By splitting the sentences into tokens					
	(d) By splitting the sentences into groups of words					
	PART - B (10 × 2 = 20 Marks)					
	Answer ALL Questions	2	W2	COL		
21.	Illustrate the properties of task Environments in AI.	2	K2	COI		
22.	What are the criteria to measure the performance of search strategies?	2	K1	<i>CO1</i>		
23.	List the criteria for the evaluation of search strategy.	2	K1	<i>CO2</i>		
24.	What is constraint satisfaction problem?	2	K1	<i>CO2</i>		
25.	Define Stochastic games with examples.	2	K1	CO3		
26.	Outline Mini –Max Strategy.	2	K2	CO3		
27	State about declarative and procedural knowledge	2	K1	<i>CO</i> 4		
27.	What are the 2 trans of symbol which is used to indicate chicate relations and functions?	2	K I	CO4		
20.	what are the 5 types of symbol which is used to indicate objects, relations and functions?	2		C04		
29.	What do you mean by ensemble learning?	2	KI	005		
30.	Define Information Extraction.	2	Kl	<i>CO</i> 6		
	PART - C $(6 \times 10 = 60 \text{ Marks})$					
21	Answer ALL Questions	10	КÌ	CO1		
31.	a) Explain in detail, the structure of different interligent agents.	10	112	201		
		10	VJ	COL		
	b) what is PEAS? Explain different agent types with their PEAS descriptions.	10	ΛZ	COI		

32.	a)	Discuss the concepts of the following with an example (i) Best First Search. (ii) A* Algorithms.	10	K2	CO2
	b)	Explain and solve the logic in crypt arithmetic problem for the below Problem: CROSS + ROADS	10	K2	<i>CO2</i>
		DANGER No two letters have the same value. The sums of the digits must be shown in the problem.			
33.	a)	Summarize alpha-beta pruning algorithm and the Min-max game playing algorithm with an example.	10	K2	СО3
	b)	Demonstrate the AO* algorithm with a suitable example.	10	K2	CO3
34.	a)	Develop an algorithm for propositional resolution and Unification algorithm.	10	K3	<i>CO</i> 4
	b)	Organize the rules of inference in Artificial Intelligence.	10	K3	<i>CO4</i>
35.	a)	Identify the five components of a planning system. OR	10	K3	CO5
	b)	Construct a Planning Graph for the problem-"HAVE CAKE AND EAT CAKE TOO".	10	K3	CO5
36.	a)	Build and discuss the various levels of Natural Language Processing. OR	10	K3	<i>CO</i> 6
	b)	Develop a simple NLP model to implement machine translation.	10	K3	<i>CO6</i>