	Reg. No.							
Question Paper Code	12820							

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Sixth Semester

Computer Science and Engineering

(Common to Information Technology, M.Tech – Computer Science and Engineering & Computer and Communication Engineering)

20CSPC601– ARTIFICIAL INTELLIGENCE

Regulations - 2020

Duration: 3 Hours		Max. Marks: 100					
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Mar	ks K– Leve	, со			
1.	Define the Characteristics of Intelligent Agent.	2	K1	C01			
2.	State Uninformed Search Technique.	2	K2	<i>CO2</i>			
3.	Infer Local Search Algorithm.	2	K2	<i>CO2</i>			
4.	State Backtracking Search.	2	K2	<i>CO2</i>			
5.	Describe Stochastic Game.	2	K2	CO3			
6.	Write the applications of Game Playing in AI.	2	K2	CO3			
7.	Outline Unification.	2	K1	<i>CO4</i>			
8.	State Ontological Engineering.	2	K2	<i>CO4</i>			
9.	Identify the use of Planning Graphs.	2	K1	<i>CO5</i>			
10.	State Learning using Relevance Information.	2	K2	<i>CO5</i>			

PART - B (5 × 13 = 65 Marks)

		Answer ALL Questions					
11.	a) i) Explain the core elements in Artificial Intelligence with example.						
	ii)	Compare the types of Intelligent Agents with its environment functions.	7	K2 CO1			
OR							
	b) i) Explain in detail about the function properties of Depth Limited search with example.						
	ii)	Describe in detail about the strategy used in A* Algorithm with example.	7	K2 CO1			
12.	a)	Formulate the map coloring problem as a Constraint Satisfaction Problem (CSP).	13	K2 CO2			
		OR					
	b)	Explain in detail about Hill Climbing Search.	13	K2 CO2			

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12820

13. a) Describe how alpha-beta pruning enhances the efficiency of the min ¹³ K² CO³ max algorithm.

OR

- b) Explain in detail about min-max algorithm with an example. 13 K2 CO3
- 14. a) Consider the following statements: 13 K3 CO4
 All humans are mortal.
 Socrates is a human.
 Therefore, Socrates is mortal.
 Formulate the above statements using First Order Predicate Logic (FOPL).
 Determine the predicates, quantifiers, variables, and logical connectives used in your formulation.

OR

- b) Articulate the syntax and semantics of FOPL, including constants, ¹³ K3 CO4 variables, predicates, functions, and quantifiers.
- 15. a) Illustrate in detail about the Fast Forward System in Planning State ¹³ K² CO5 Space Search.

OR

b) Outline Knowledge in Learning with example. 13 K2 CO5

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Construct the language models commonly used in Natural language ¹⁵ K3 CO6 processing.

OR

b) Build syntactic analysis with example.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

15 K3 CO6