Reg. No.			
Question Paper Code12984			
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024			
Sixth Semester			
Computer Science and Engineering			
20CSPC602 - COMPILER DESIGN			
Regulations - 2020			
Max	. Mar	ks: 1	00
PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions	Marks	K – Level	С0
the output of a lexical analyzer?	1	Kl	<i>CO1</i>
 b) Intermediate code (c) Tokens (d) Machine code phase does the compiler check for syntax errors in the code? (b) Semantic analysis 	1	K1	C01
iler uses LEX and YACC in combination for analysis. LEX would handle C would handle	1	K1	C01
by the syntax parsing (b) Syntax parsing; semantic analysis (c) Code optimization (c) Code optimization; lexical analysis	1	K)	cor
tokens in the following C statement is printf(" $1 = \%$ d, & $1 = \%$ x", 1, &1);	1	K2	02
eywords of a language are recognized during (b) the code generation	1	K1	CO2
alysis of the program (d) dataflow analysis sembler, symbol table is first pass (b) Generated in second pass	1	K1	CO2

Duration: 3 Hours

$PARI - A (MCQ) (20 \times I = 20 Marks) $ Marks				СО
	Answer ALL Questions		Level	00
1.	What is the output of a lexical analyzer?	1	K1	<i>CO1</i>
C	(a) Syntax tiee (b) intermediate code (c) Tokens (d) Machine code	1	<i>K</i> 1	CO1
Ζ.	During which phase does the compiler check for syntax errors in the code?	1	ΚI	COI
	(a) Lexical analysis (b) Semantic analysis			
•	(c) Syntax analysis (d) Intermediate code generation	1	V^{1}	COL
3.	Suppose a compiler uses LEX and YACC in combination for analysis. LEX would handle	1	K1	COI
	, while YACC would handle			
	(a) Token recognition; syntax parsing (b) Syntax parsing; semantic analysis			
	(c) Code generation; code optimization (d) Code optimization; lexical analysis			~ ~ •
4.	The number of tokens in the following C statement is printf(" $i = \%d$, & $i = \%x$ ", i, &i);	Ι	K2	CO2
	(a) 3 (b) 26 (c) 10 (d) 21			
5.	In a compiler, keywords of a language are recognized during	1	K1	<i>CO2</i>
	(a) parsing of the program (b) the code generation			
	(c) the lexical analysis of the program (d) dataflow analysis			
6.	In a two-pass assembler, symbol table is	1	K1	<i>CO2</i>
	(a) Generated in first pass (b) Generated in second pass			
	(c) Not generated at all (d) Generated and used only in second pass			
7.	The grammar $A \rightarrow AA \mid (A) \mid \epsilon$ is not suitable for predictive-parsing because the grammar	1	K2	СОЗ
	is?			
	(a) ambiguous (b) left-recursive (c) right-recursive (d) A and B			
8.	If a state does not know whether it will make a shift operation or reduction for a terminal	1	K1	СО3
	is called?			
	(a) Shift/reduce conflict (b) Reduce /shift conflict (c) Shift conflict (d) Reduce conflict			
9.	Which one of the following is a top-down parser?	1	K1	СО3
	(a) Recursive descent parser (b) Operator precedence parser			
	(c) An LR(k) parser (d) An LALR(k) parser			
10.	In a compiler's intermediate code, procedure calls typically use an "activation record."	1	K1	<i>CO</i> 4
	This record generally includes:			
	(a) The syntax tree of the procedure (b) The return address and local variables			
	(c) Only the parameters of the function (d) The entire code of the procedure			
11.	The semantic analyzer uses which of the following structures to store information about	1	K1	<i>CO</i> 4
	identifiers?			
	(a) Control flow graph (b) Syntax tree (c) Symbol table (d) Intermediate code			
12.	Which of the following is NOT a common form of intermediate representation (IR)?	1	K1	<i>CO</i> 4
	(a) Three-address code (b) Control flow graph (CFG)			
	(c) Assembly language (d) High-level programming language			
13.	Which of the following is NOT a component of the run-time environment?	1	K1	<i>CO5</i>
	(a) Stack (b) Heap (c) Intermediate code (d) Static data area			
14.	In a run-time environment, which of the following is typically stored on the stack?	1	K1	<i>CO5</i>
	(a) Global variables (b) Static data (c) Local variables (d) Heap memory			
				<i>.</i>
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		129	984
	Ι			

15.	The graph that shows basic blocks and their successor relationship is called:	1	Kl	<i>CO5</i>
	(a) DAG (b) Control graph (c) Flow graph (d) Hamiltonian graph			
16.	In a basic block's DAG, a node typically represents:	1	K1	<i>CO5</i>
	(a) A variable declaration (b) An individual operation or subexpression			
	(c) A storage location (d) A data type			
17.	The optimization which avoids test at every iteration is?	1	K1	<i>CO6</i>
	(a) Loop unrolling (b) Loop jamming (c) Constant folding (d) None of the mentioned			
18.	Substitution of values for names (whose values are constants) is done in	1	K1	<i>CO6</i>
	(a) Local optimization (b)Loop optimization (c)Constant folding (d) Strength reduction			
19.	Dead-code elimination in machine code optimization refers to:	1	K1	<i>CO6</i>
	(a) Removal of all labels (b) Removal of values that never get used			
	(c) Removal of function which are not involved (d) Removal of a module after its use			
20.	When performing DAG optimization, what happens to identical subexpressions in the	1	K1	<i>CO6</i>
	graph?			
	(a) They are duplicated to avoid confusion (b) They are merged to reduce redundancy			
	(c) They are ignored completely (d) They are converted into temporary			
	variables			
	PART - B (10 × 2 = 20 Marks)			
	Answer ALL Questions			
21.	Give the significance of symbol table. Draw a sample table.	2	K2	COI
22.	Differentiate tokens, patterns and lexeme.	2	K2	<i>CO1</i>
23.	List the errors that can occur at different stages of compiler.	2	K1	<i>CO2</i>
24.	How and why input buffering is occurring?	2	K1	<i>CO2</i>
25.	Write down the CFG for representing the if-else statement of any language.	2	K2	CO3
26.	Define YAAC.	2	K1	СО3
27.	State the rules of type checking.	2	K1	<i>CO</i> 4
28.	Define back patching.	2	K1	<i>CO</i> 4
29.	What are two common strategies used for allocating memory dynamically?	2	K1	<i>CO5</i>

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) Explain the phases of compiler in detail. Illustrate the output of each phase of 10 K2 CO1 compilation for the input a = (b+c)*(b+c)*2.

OR

b) i) Explain Compiler Construction Tools.ii) Describe the need for grouping of phases.

K2 CO1*K2* CO1

K3 CO2

K1 CO6

2

5

5

5

32. a) i) Organize the Role of Lexical Analyzer with an example.

30. Define Peep-hole Optimization.

ii) Divide the following C++ program into lexemes. Which lexemes should have 5 K3 CO2 associated lexical values, and what should those values represent? float limitedSquare(x) {
 /* returns x-squared, but never more than 100 */
 return (x <= -10.0 || x == 10.0) ? 100 : x * x;
 }

OR

b) Construct minimized DFA for the regular expression (a/b)* abb using direct ¹⁰ K3 CO2 method.

33.	a)	Construct a predictive parsing table for the grammar $S \rightarrow (L) \mid a$ $L \rightarrow L \mid S \mid S$	10	K3	СО3
		and show whether the following string will be accepted or not. $(a,(a,(a,a)))$. OR			
	b)	Construct the SLR parsing table for the following Grammar: $E \rightarrow E+T \mid T$ $T \rightarrow TF \mid F$ $F \rightarrow F^* \mid a \mid b.$	10	К3	СО3
34.	a)	Generate Three address codes for the following piece of code and hence write the Syntax Directed Translation. while (a <b and="" c="">b) do if c <d then x := y + z break else x := y - z</d 	10	Κ3	<i>CO4</i>
		OR			
	b)	Generate Three address code and apply back patching for the given expression if($a > 0 & b < 1 \parallel c!=0$) x = a+b+c; else x = 1;	10	К3	<i>CO4</i>
35.	a) i)	Discuss the various issues in design of Code Generator.	5	K2	CO5
	ii)	Write the code generation algorithm. Explain the process of register allocation and assignment.	5	K2	CO5
		OR			
	b)	Elaborate on Storage Organization and Allocation Strategies in detail.	10	K2	CO5
36.	a)	Illustrate the Principal Sources of Optimization with example. OR	10	К2	<i>CO</i> 6
	b) i)	Explain in detail about Optimization of basic blocks.	7	K2	<i>CO6</i>
	ii)	Consider the basic block given below. a=b+c c=a+d d=b+c e=d-b a=e+b Find out the minimum number of nodes and edges present in the DAG	3	K2	<i>CO6</i>
		representation of the above basic block.			