|--|

Question Paper Code 13217

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Seventh Semester

Civil Engineering

20CYOE907 - GREEN TECHNOLOGY

Regulations - 2020

Dι	ration: 3 Hours	Max.	Maı	ks: 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$		A malen	<i>K</i> –	CO
	Answer ALL Questions	IV.	aarks	K – Level	CO
1.	Identify the parameters that are primarily concerned with Green Technology		1	K2	CO1
	(a) Enhancing human convenience (b) Reducing carbon emissions				
	(c) Increasing industrial production (d) Improving technological efficiency only				
2.	What does "carbon footprint" refer to in green technology discussions?		1	<i>K1</i>	CO1
	(a) The total number of carbon atoms in the environment				
	(b) The measure of carbon stored in forest				
	(c) The footprint left by industrial machine				
	(d) The amount of carbon dioxide emissions produced by human activities				
3.	Identify the primary benefit of renewable energy sources in green technology?		1	K2	CO1
	(a) Unlimited supply of natural resources (b) Zero environmental impact				
	(c) High production speed (d) Free installation and maintenance				~~.
4.	Which of these is a core principle of green building technologies?		1	K2	CO1
	(a) Using the most affordable materials (b) Maximizing the use of fossil fuels				
	(c) Minimizing energy consumption and waste (d) Promoting the use of single-use plas-	ics			~~.
5.	Indicate the primary goal of Cleaner Production (CP)		1	<i>K2</i>	CO2
	(a) To reduce product quality while increasing output				
	(b) To minimize environmental impact through improved production processes				
	(c) To increase industrial production speed				
	(d) To maximize the use of raw materials regardless of waste		,	1/1	GO2
6.	Which of the following is NOT an outcome of Cleaner Production?		1	K1	CO2
	(a) Lower operating costs due to efficient resource use				
	(b) Reduced waste treatment costs				
	(c) Increased environmental risk				
7	(d) Enhanced product competitiveness		1	K1	CO2
7.	Represent the key benefit of implementing Cleaner Production.		1	ΛI	CO2
	(a) Improved efficiency and reduced environmental footprint				
	(b) Increased costs due to environmental regulations				
	(c) Decreased product quality and customer satisfaction				
0	(d) Increased emissions and waste disposal		1	K2	CO2
8.	Life Cycle Assessment (LCA) is often used in Cleaner Production to		1	K2	CO2
	(a) Measure the durability of products				
	(b) Improve product aesthetics(c) Calculate production costs				
	(d) Assess the environmental impacts of a product from raw material extraction to dispose	sco1			
9.	Indicate the key principle of both Pollution Prevention and Cleaner Production	15a1	1	K2	CO3
7.	(a) Treating waste after it has been created		•	112	000
	(b) Using resources more efficiently to minimize waste and emissions				
	(c) Maximizing the use of non-renewable resources				
	(d) Ignoring environmental regulations				
	(a) ignoring charlomating regulations				

10.	Recall the main goal of both Pollution Prevention and Cleaner Production	1	K1	CO3			
	(a) Reducing operational costs by any means necessary						
	(b) Minimizing the environmental impact of industrial activities						
	(c) Focusing solely on profitability(d) Complying with environmental laws without making improvements						
11.	Identify the statement which best describes a Cleaner Production approach to energy use.	1	<i>K1</i>	CO3			
	(a) Reducing energy consumption through efficient technologies and renewable sources						
	(b) Using the cheapest energy source available regardless of environmental impact						
	(c) Increasing energy use to maximize production						
12	(d) Using only fossil fuels in energy generation Which of the following is NOT a Pollution Prevention technique?	1	<i>K1</i>	CO3			
12.	(a) Energy conservation (b) End-of-pipe pollution control measures	•	111	005			
	(c) Process modification to reduce emissions (d) On-site recycling of waste materials						
13.	Represent the reason for wide usage of conventional energy resources.	1	K1	CO4			
	(a) They are unlimited and easily renewable						
	(b) They require less technology to harness						
	(c) They have zero environmental impact(d) They are cheaper and provide a reliable supply of energy						
14.	Which of the following is the most abundant conventional energy resource globally?	1	<i>K1</i>	CO4			
1	(a) Natural gas (b) Coal (c) Oil (d) Nuclear energy						
15.	Oil is mainly used for which of the following purposes?	1	K2	CO4			
	(a) Generating electricity (b) Heating homes						
1.0	(c) Transportation fuel (d) Manufacturing electronics	1	K2	CO4			
16.	Natural gas is often referred to as a "cleaner" conventional energy source because: (a) It produces less carbon dioxide than coal and oil	1	K2	CO4			
	(b) It emits no greenhouse gases						
	(c) It is renewable and inexhaustible						
	(d) It can be used without any emissions						
17.	Which of the following is considered a green fuel?	1	<i>K1</i>	CO5			
10	(a) Coal (b) Biodiesel (c) Natural gas (d) Diesel Identify the green fuel which is commonly produced from vegetable oils or animal fats.	1	<i>K1</i>	CO5			
10.	(a) Ethanol (b) Methanol (c) Biodiesel (d) Hydrogen	•	111	000			
19.	Indicate the major challenge in the adoption of green fuels.	1	K2	CO5			
	(a) Limited availability of renewable resources						
	(b) High greenhouse gas emissions						
	(c) High production costs and lack of infrastructure for large-scale use						
20	(d) Scarcity of feed stocks like biomass Identify the process involves converting biomass into a gas, such as syngas, that can be	1	K2	CO5			
20.	used for energy production.						
	(a) Combustion (b) Pyrolysis (c) Anaerobic digestion (d) Gasification						
$PART - B (10 \times 2 = 20 Marks)$							
21	Answer ALL Questions	2	V 1	CO1			
	Represent the key factors that impact the adoption and effectiveness of green technologies.	2	K1	CO1			
	Give the necessity of industrial ecology.	2	K1	CO1			
	Indicate the benefits of cleaner production.	2	K2	CO2			
	Sketch the Process Flow Diagram for CP Assessment.	2		CO2			
	Comment about Eco Labelling.	2	<i>K1</i>	CO3			
	Differentiate carbon sequestration and carbon stock.	2	K2	CO3			
	Identify the effects of conventional sources of energy on the environment.	2		CO4			
	Define Non- Conventional Sources of Energy.	2	K1	CO4			
29.	List the similarities and differences between fossil fuels and renewable energy.	2	K1	CO5			
30.	Write the main purpose of geothermal energy.	2	K2	CO5			
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create		132	17			
	2						

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) Infer the importance of green technology in addressing climate change and promoting 10 K2 CO1 sustainable development. OR K2 CO1 b) Discuss at least three factors that affect the adoption of green technologies in various 10 sectors and how these factors interplay to influence decision-making? 32. a) Explain the fundamental principles of Cleaner Production, and how can they be 10 K2 CO2 applied across different industries. OR b) Elaborate the roles do industry, government, and educational institutions play in the 10 K2 CO2 adoption and promotion of Cleaner Production. K2 CO3 33. a) Construct the steps involved in performing a comprehensive waste audit. How can its 10 findings be applied to Cleaner Production? b) Asses the concept of carbon credits support industries in reducing their carbon K2 CO3 footprints. 34. a) Outline the key environmental challenges associated with the extraction, processing, K2 CO4 and consumption of conventional energy resources. b) Examine the advancements in renewable energy technologies to bridge the gap K2 CO4 between current energy needs and future energy availability. 35. a) Describe the techniques involved in green fuels which help in reducing carbon K2 CO5 emissions and mitigating climate change while supporting economic growth. K2 CO5 b) Explain the opportunities and key challenges for expanding wind energy infrastructure in India, and how can they be addressed. K2 CO4 36. a) How can non-conventional energy sources contribute to a more sustainable and 10 resilient energy future, particularly in reducing dependence on fossil fuels? b) Predict the importance of geothermal energy that can be utilized in countries like 10 K2 CO4 India, and discuss the potential advantages and limitations of this energy source.