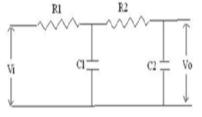
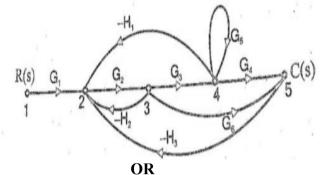

	Reg. No.				
	Question Paper Code12436				
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023					
Fifth Semester					
Electronics and Communication Engineering					
	20ECEL508 - CONTROL SYSTEMS ENGINEER	RING			
	(Provide Graph, Polar sheet and Semilog sheet)				
(Regulations 2020) Duration: 3 Hours Max. Marks: 100					
PART - A ($10 \times 2 = 20$ Marks) Max. Marks: 100					
Answer ALL Questions					
1.	Distinguish between open loop and closed loop system.			K-Lev	rks, vel, CO
2.	Write the analogous electrical elements in force-current mechanical translational system.	analogy	for	2,K1	,CO1
3.	Define non-touching loop.			2,K1	,CO2
4.	Identify the advantages of state variable model.			2,K1	,CO2
5.	A second order system has the following properties $\xi = 0$. rad/sec. Express the transfer function of the system.	5, ω_n =	= 10	2,K2	,CO3
6.	Distinguish between type and order of a system.			2,K1	,CO3
7.	Write the formula for centurion of the asymptotes found in technique?	n root l	ocus	2,K2	,CO5
8.	State Nyquist stability criterion.				,CO5
9.	Derivative controllers are not used control system. State the reas	trollers are not used control system. State the reason.			,CO6
10.	Draw the circuit of the lead compensator and draw its pole zero	diagram	l.	2,K1	,CO6

PART - B (5 × 13 = 65 Marks)


Answer ALL Questions

11. a) Draw the force voltage and force current analogous circuit of the ^{13,K2,CO1} mechanical system shown below.


OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12436

13.K2.CO1

12. a) Obtain the transfer function for the signal flow graph shown in figure. 13,K2,CO2

b) Determine the transfer function for the system which is represented in ^{13,K2,CO2} state space representation as follows

$$\begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{x}}_{2} \\ \dot{\mathbf{x}}_{3} \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{u}$$
$$\mathbf{y} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{x}_{3} \end{bmatrix}$$

13. a) Derive the response of the under damped second order system for unit ^{13,K2,CO3} step input.

OR

- b) (i) A unity feedback system G(s) = K₁(2s+1)/(s(5s+1)(1+s)²). When the input r (t) ^{6,K2,CO3} = 1+6t, determine the minimum value of K₁ so that the steady state error is less than 0.1.
 (ii) Consider a unity feedback system with closed loop transfer ^{7,K2,CO3} function C(s)/R(s) = Ks+b/(s²+as+b). Determine the open loop transfer function G(s). Obtain its steady state error with unit ramp input.
- 14. a) Apply Routh array and determine the stability of the system 13,K3,CO5 represented by the characteristic equation, $S^5+S^4+2S^3+2S^2+3S+5=0.$

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12436

Comment on the location of characteristic equation.

OR

- b) Sketch the root locus of the system whose open loop transfer function ^{13,K3,CO5} is $G(s) = \frac{K}{s(s+2)(s+4)}$. Find the value of K so that damping ratio of the closed loop system is 0.5.
- 15. a) Discuss the procedure adhere to device a lag compensator using bode ^{13,K3,CO6} plot.

OR

b) Analyze a phase lead compensator for the system G(S) ^{13,K3,CO6} $=\frac{K}{s(s+1)}$ to satisfy the phase margin $\ge 45^{\circ}$, steady state error for a unit ramp input $\le 1/15$ and gain crossover frequency <7.5 rad/sec.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Sketch Bode plot for the following transfer function and determine the ^{15,K3,CO4} system gain K for the gain crossover frequency to be 5 rad/sec. $G(s) = \frac{Ks^2}{(0.02s+1)(0.2s+1)}$

OR

b) The loop transfer function of a certain control system is given by 15,K3,CO4 $G(s) H(s) = \frac{K}{(s+2)(s+10)}$). Sketch the Nyquist plot and hence calculate the range of values of K for stability.