		Reg.	No.											
		1	Į	1.2	1		·+ 				, 1		I İ	
	Question Paper Co	de		13	013									
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024													
	Sixth Semester													
	Electronics and Com	munic	cation	E	ngir	eer	ing							
	20ECEL602 - WIRELE	SS SE	NSO	R I	NET	W(ORK	S						
	Regulat	ions -	2020											
Du	ration: 3 Hours		2020								May	c Ma	rks: 1	00
Du	PART A (MCO)	(2 0 × 1	1 = 20	М	arl	c)					11102			00
	Answer AI	L Oue	r = 20	IVI		.5)						Mark:	K– Level	С0
1.	Which of the following is the function of a dedic	cated s	ensor	?								1	Kl	CO1
	(a) Records and monitors physical condition of e	enviro	nment											
	(b) Organizes collected data at a location that is	centra	lized											
	(c) Signal processing													
	(d) both a and b													~~.
2.	WSN measures physical parameter.	11			1	A 11 J	1	1				Ι	KI	COI
2	(a) Sound (b) Temperature (c) Po	llutior	1	(d) .	AII 1	the a	bo	ve			1	K1	CO1
3.	(a) Wireless (b) Wired (c) PE				(J)	Nor	ha of	`th	<u> </u>	hove		1	K1	COI
4	The components of a sensor node is			,	(u)	INOL		u u	c a	JUVE		1	K1	<i>CO2</i>
	(a) Radio trans receiver (b) Microcontroller (c) An	electro	oni	c ci	rcuit	t (d)	А	.11 t	he al	nove			
5.	The energy source used in WSN are						. ()					1	K1	<i>CO2</i>
	(a) Battery (b) Inverter (c) Capa	citor			(d)	No	one o	of t	the	abov	ve			
6.	The cost of a sensor depends on factor	rs.										1	K1	<i>CO2</i>
	(a) Area (b) Size (c) Compl	exity o	of desi	ign		(d) A	\ 11	the	abo	ve			
7.	Which of the following factors is most import	tant in	desig	gni	ng 1	he j	phys	sica	al l	ayer	of a	1	Kl	CO3
	wireless sensor network?	C	. .											
	(a) High data rate (b) Pov	ver em	lcienc	y izo										
8	(c) Complex modulation schemes (d) Large packet size						1	K1	CO3					
0.	(a) To maximize throughput (b)	Tom	inimi	ze (ener	ov (cons	um	nnti	on				
	(c) To avoid data packet collisions (d) To improve signal strength													
9.	Wakeup radios are designed to reduce power con	nsump	tion b	y:	C		U					1	K1	СО3
	(a) Keeping the transceiver active at all times													
	(b) Putting the transceiver to sleep and waking up only for important events													
	(c) Increasing transmission power													
10	(d) Increasing data rate Which of the following is a common routing pro	tocol	used i	n V	VCN	Ic ?						1	K1	CO4
10.	(a) $OSPF$ (b) $AODV$ (c) BGP	(b)	RIP	II V	v SI	19:						1	111	007
11.	Routing protocols in WSNs are often designed v	vith a t	focus	on:								1	K1	<i>CO4</i>
	(a) Maximizing data rate (b) M	linimiz	zing e	ner	gy o	ons	ump	otic	m					
	(c) Ensuring maximum bandwidth (d) R	educir	ng har	dw	are	cost	s							
12.	In energy-efficient routing, nodes usually select	routes	based	1 01	n:							1	K1	<i>CO</i> 4
	(a) Shortest path regardless of energy cost													
	(b) Paths that minimize overall energy consumption	tion												
	(c) Maximum throughput													
12	(a) what in the interval adjusting the transmission r	OWO#	ofnod	lec	mai	n1.,	holm		0.			1	K1	<i>CO</i> 5
13.	(a) Increase data processing speed (b) Re-	duce i	nterfe	ies en	mai ce a	шу nd ғ	enero	ost ov	0. 1159	ge		1		200
	(c) Increase network latency (d) Mit	nimize	data	pad	cket	size))	⊃ 7	400	5				
_														012
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze;	K5-E	valuate	?; K	6-0	Creat	te						- 13	U13 -

14.	In clustering, the role of a cluster head is to:	1	K1	<i>CO5</i>
	(a) Collect data from other nodes and forward it to the base station			
	(b) Track the locations of all nodes			
	(c) Increase the transmission power of nodes			
	(d) Reduce the overall size of sensor nodes	_		~ ~
15.	Which of the following is a key benefit of clustering in WSNs?	Ι	KI	<i>CO5</i>
	(a) Reducing node processing speed			
	(b) Conserving energy by reducing long-distance transmissions			
	(d) Decreasing node lifespan			
16	Time synchronization in wireless sensor networks is important because:	1	K1	CO5
10.	(a) It allows nodes to conserve memory			
	(b) It enables accurate data fusion and event detection			
	(c) It reduces the transmission range of nodes			
	(d) It eliminates data processing requirements			
17.	Berkeley Motes are primarily known for their application in:	1	K1	<i>CO6</i>
	(a) Mobile phone networks			
	(b) Wireless sensor networks (WSNs)			
	(c) Satellite communications			
10	(d) Optical fiber networks	1	V I	C06
18.	I inyOS is a popular operating system used in:	1	ΛI	000
	(a) Laptops and desktops (b) Mobile phones			
	(c) Wireless sensor networks (WSNs)			
	(d) Satellite systems			
19.	COOJA is a simulation tool that is commonly used with which operating system?	1	K1	<i>CO6</i>
	(a) Windows OS			
	(b) TinyOS			
	(c) CONTIKIOS			
	(d) FreeRTOS		17.1	604
20.	TOSSIM, a simulator for WSNs, is designed to emulate which aspect of sensor networks?	1	KI	<i>CO</i> 6
	(a) Graphical interfaces			
	(a) High performance computing tasks			
	(d) Cloud computing			
	$PART - B (10 \times 2 = 20 \text{ Marks})$			
	Answer ALL Questions			
21.	List the commercial applications of sensor networks.	2	K1	<i>CO1</i>
22.	Define ad hoc networks.	2	<i>K1</i>	<i>CO1</i>
23	Compare active and passive sensors	2	K2	<i>CO2</i>
24	Define self-organization of network	2	K1	<i>CO2</i>
2 - .	Commence on demond motocole with monostive motocole	2	K1	<i>CO</i> 3
23.	Compare on-demand protocols with protocols.	2		<i>cos</i>
26.	What are the protocols used for distributed demand assignment strategy?	2	K1	003
27.	What is topology control, and why is it important in sensor networks?	2	Kl	CO4
28.	What criteria are often considered when choosing cluster heads in WSNs?	2	K1	<i>CO</i> 4
29.	What are the characteristics of Berkeley mote family?	2	K1	<i>CO5</i>
30.	Mention three categories of sensor node hardware.	2	K1	<i>CO5</i>
	$PART - C (6 \times 10 = 60 Marks)$			
	Answer ALL Questions			
31.	a) Describe the characteristics of wireless sensor network.	10	K2	<i>CO1</i>
	OR			

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

	b)	Summarize the challenges and the required mechanisms of a wireless sensor network.	10	K2	<i>CO1</i>
32.	a)	Explain energy consumption during the transmission and reception of a signal in WSN with the supporting equations.	10	K2	<i>CO2</i>
		OR			
	b)	Illustrate the sensor network architecture and describe the components in detail.	10	K2	<i>CO2</i>
33.	a)	Explain the impact of S-MAC protocol in a network with suitable diagrams.	10	K2	CO3
	b)	Explain any three schedule based MAC protocols of wireless sensor network.	10	K2	CO3
34	a)(i)	Which routing is more suitable for WSN? Explain the reasons	5	K2	CO4
54.	(;;)	Exhibit the features of the IEEE 202 15 4 MAC protocol	5	K2	CO4
	(11)	Exhibit the reatures of the fEEE 802.15.4 MAC protocol.	2	112	007
	1 \		10	Vγ	CO4
	b)	Explain the LEACH routing with the help of neat diagram. Give its advantages and disadvantages.	10	K2	04
35.	a)	Explain how clustering improve the scalability and energy efficiency of sensor networks, and what are the potential pitfalls of relying on cluster heads?	10	K2	<i>CO4</i>
	b)	What are the main challenges in achieving reliable time synchronization across a dynamic and distributed network, and how do environmental factors influence these synchronization methods?	10	K2	CO4
36.	a)	Describe the components and implementation models of Timer functions in nesC. OR	10	K2	CO5
	b)	Explain the characteristics and components of node-level simulator with necessary functions.	10	K2	CO5