Reg. No.

Question Paper Code 13083

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Third Semester

Electronics and Communication Engineering 20ECPC301 - DIGITAL ELECTRONICS

Regulations - 2020

Du	ration: 3 Hours Max	k. Mar	ks: 1	00							
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$		<i>K</i> –	~~							
	Answer ALL Questions	Marks	Level	co							
1.	A+AB=A represents which law	1	<i>K1</i>	CO1							
	(a) Associative (b) Idempotence (c) Commutative (d) Absorption										
2.	The logic gate that provides high output for same inputs	1	K1	CO1							
	(a) NOT (b) X-NOR (c) AND (d) XOR										
3.	A five variable karnaugh map needs	1	<i>K1</i>	CO1							
	(a) 32 squares (b) 33 squares (c) 34 squares (d) 35 squares										
4.	If A and B are the inputs of a half adder, the sum is given by	1	K1	CO2							
	(a) A EX-NOR B (b) A XOR B (c) A OR B (d) A AND B										
5.	The limiting factor on a speed of parallel adder is	1	K1	CO2							
	(a) Input delay (b) Carry propagation delay										
	(c) Input propagation delay (d) Output delay										
6.	One that is not the outcome of magnitude comparator is	1	<i>K1</i>	CO2							
	(a) $a < b$ (b) $a = b$ (c) $a > b$										
7.	A shift register that will accept a parallel input or a bidirectional serial load and internal	1	K1	CO3							
	shift features is called as?										
	(a) Tristate (b) End around (c) Universal (d) Conversion										
8.	A flip flop stores	1	K1	CO3							
	(a) 10 bit of information (b) 1 bit of information										
	(c) 2 bit of information (d) 3-bit information										
9.	The basic storage element in a digital system is	1	K1	CO3							
	(a) T Flip flop (b) Counter (c) Multiplexer (d) Decoder										
10.	A mod 10 asynchronous counter needs	1	K1	CO4							
	(a) 4 J-K flip flop & 1 NAND gate (b) 3 J-K flip flop & 1 NAND gate										
	(c) 5 J-K flip flop & 1 NAND gate (d) 4 J-K flip flop &2 NAND gate										
11.	How many different states does a 2-bit asynchronous counter have?	1	<i>K1</i>	CO4							
	(a) 1 (b) 4 (c) 2 (d) 8										
12.	Essential Hazards exists only	1	<i>K1</i>	CO4							
	(a) in unequal circuits (b) in sequential circuits										
	(c) in combinational circuits (d) in adder circuits										
13.	The analysis of Asynchronous sequential circuits are used to obtain	1	<i>K1</i>	CO5							
	(a) a table (b) a diagram (c) graph (d) both a and b										
14.	The flow table which has exactly one stable state for each row in the table is called	1	K1	CO5							
	(a) Race free table (b) Transition table (c) Essential table (d) None of the above										
15.	The race in which stable state depends on order is called										
	(a) Critical race (b) Identical race (c) Non critical race (d) Defined race										
16.	Which of the following sequential circuit generates the feedback path due to the cross	1	<i>K1</i>	CO5							
	coupled connection from the output of one gate to the input of another gate?										
	(a) Synchronous (b) Asynchronous (c) Excitation variable (d) Continuously change										
17.	EPROM can be	1	K1	CO6							
	(a) UVPROM (b) EEPROM (c) both a and b (d) None of the above										

18.	Which of the following is an example of volatile memory? (a) ROM (b) RAM (c) PROM (d) Hard-disk							K1	CO6			
19.	PAL has (a) Programmable AND & OR array (b) Programmable AND & Fixed OR array							K1	CO6			
20.	(c) I	•	Programmable OR	array (d) Non	e of the al	•	1	K1	CO6			
	(a) 1	NOT gate	(b) NOK gate	(c) NA	ND gate	(d) AND gate						
PART - B ($10 \times 2 = 20$ Marks) Answer ALL Questions												
21.	Stat	e De Morgan'	's theorem.				2	K1	CO1			
			10111 into a decimal	number system			2	K2	CO1			
			ional logic circuit.				2	<i>K1</i>	CO2			
			lltiplexer using logic	gates.			2	K2	CO2			
					design a c	counter of modulus 60.	2	K2	CO3			
		•	eristic equation of a	-	acsign a c	ounter of modulus oo.	2	<i>K1</i>	CO3			
		ine Primitive		ore i tip tiop.			2	<i>K1</i>	CO4			
			de sequential circuit	7			2	K1	CO4			
		the advantage	-	<u>'</u>			2	K1	CO5			
		_					2		CO6			
30.	Con	npare PLA an	ural.				-	112	000			
PART - C $(6 \times 10 = 60 \text{ Marks})$ Answer ALL Questions												
31.	a)		augh Map method ing NAND gates onl			g switching function and $(8,9,11,15)+d(2,13)$.	10	K3	CO1			
	b)	Use Quine F(A,B,C,D)=	e Mccluskey m = $\sum m(0,2,3,5,7,9,11,0)$	ethod to si	mplify	the given expression	10	К3	CO1			
32.	a)	Explain with	neat diagram the fu	nction of 4-bit b	inary para	allel adder/ subtractor.	10	K2	CO2			
	b) With a neat diagram, explain in detail about the working of a 4 –bit look ahead car adder. Also mention its advantage over conventional adder.							K2	CO2			
33.	a)	Explain Uni Shift Registe	•	r and the princi	ple of Op	peration of 4-bit Universal	10	K2	CO3			
		C		OR								
	b)	Illustrate the condition is			op and sl	how how the race around	10	K2	CO3			
34.	a)		synchronous counter ,011,100,101,110,11				10	К3	CO4			
	b)	With examp hazards.	les, explain Hazards		ble metho	ods to detect and eliminate	10	К3	CO4			
35.	procedure for asynchronous sequential circuits.								CO5			
	b)	Describe ch	out races and method	OR le to eliminate re	000		10	K2	CO5			
	b) Describe about races and methods to eliminate races.							112	203			

36. a) Use PLA to implement the following functions.

$$A(x,y,z) = \sum_{z=0}^{z} m(1,2,4,6)$$

$$B(x,y,z) = \sum_{i=1}^{n} m(0,1,6,7)$$

$$C(x,y,z) = \sum_{n=0}^{\infty} m(2,6)$$

OR

b) Construct a circuit to explain the operation of TTL.

10 K3 CO6

10 K3 CO6