			r		r –	-	r –	1	1		r –	1	r –	,	
			Re	g. No.											
		Question Paper Co	ode	12342											
		B.E. / B.Tech - DEGREE EX Third	AMI Sen	NATI(DN	S, I	NO	V	/ D	ЭEC	C 2	023	5		
		Electronics and Com 20ECPC301 - DIGI	mun TAL	ication LELEC	Er CTF	ngin RO	nee NI	erin CS	ıg						
		(Regulat	tions	2020)											
Dur	ation	: 3 Hours PART - A (10 Answer Al	× 2 LL Q	= 20 M Juestior	arl 15	ks)				N	Ma:	x. N	Лаı	ks:	100
1.	Stat	e De-Morgan's theorem												M K-L 2,K	larks, .evel,CC (1,CO1
2.	Infe	er the gray code of the binary value	[10	101101]2.									2,K	2,CO1
3.	Imp	element Boolean function $F=\Sigma m(1, 1)$	2,3,7	7) using	; 3:	8 d	ecc	ode	r.					2,K	£2,CO2
4.	Dra	w the logic diagram for half subtra	ctor	•										2,K	£2,CO2
5.	Hov	w many flip flops are required for nter?	or de	signing	sy	ncl	hro	no	us	MC	DD	60)	2,K	£2,CO3
6.	Wh	at is a shift register? Name differen	nt typ	pes of s	hift	t re	gis	ter'	?					2,K	<i>CI,CO3</i>
7.	Def	ine Hazards. How it can be avoide	d?											2,K	<i>CI,CO4</i>
8.	Out	line the characteristics of critical ra	ace.											2,K	C2,CO4
9.	Sun	nmarize the applications of PLA.												2,K	2,CO6
10.	Dra	w the invertor circuit using CMOS	5.											2,K	£2,CO6
		PART - B (5 > Answer Al	< 13 : LL C	= 65 M	arl	ks)									
11.	a)	Simplify the expression $Y=\Sigma m$ (7 K map method.	', 9,	10, 11,	12,	, 13	8, 1	4,	15)) us	ing	g th	e	13,	K2,COI
	1 \	O	R			•			0				1	12	KI CO
	b)	Apply K Map method to reduce t construct using NAND gates only $E(A \ P \ C \ D) = \sum m(0, 1, 5, 8, 9)$	he fo 7. 1.2 1	$\frac{1}{2}$	g sv	w1t	chi	ng	fui	nctı	on	an	d	13,	кз,сол
12.	a)	Implement full adder with input using multiplexer.	s x,	y, z ar	nd i	two	0 0	utp	outs	5 S	ar	nd (С	13,	K3,CO2
		Ol	R												
	b)	What is magnitude comparator? Design 2 bit Magnitude comparator and drive expression for $A > B$, $A < B$ and $A = B$. Realize using gates.										or g	13,	K3,CO2	
13.	a)	Design and explain the working of flop. Draw its excitation table and	of 4- l stat	bit para e table.	alle	1 co	our	nter	us:	sing	g T	-fli	р	13,	K3,CO3
K1 –	Reme	mber; K2 – Understand; K3 – Apply; K4	– And 1	alyze; K5	– E	Eval	luat	e; K	K6 -	- Cre	eat	е		12.	342

OR

- b) Design a MOD 5 synchronous counter using JK flip flop and ^{13,K3,CO3} illustrate its timing diagram.
- a) Design an asynchronous sequential circuit with two inputs X and Y ^{13,K3,CO4} and with one output Z. Whenever Y is one, input X is transferred to Z. When Y is zero, the output does not change for any change in X.

OR

- b) Construct a circuit with primary inputs A and B to give an output Z 13,K3,CO4 equal to 1 when A becomes 1 if B is already 1. Once Z = 1 it will remain so until A goes to 0. Draw timing diagram, state diagram and Primitive flow table for designing the circuit.
- 15. a) Implement the following function using PAL $F_1(A,B,C) = \Sigma(1,2,4,6)$ and $F_2(A,B,C) = \Sigma(0,1,6,7)$.

OR

b) Illustrate the following Boolean functions using 8*2 PROM ^{13,K3,CO6} $F_1=\Sigma m(3,5,6,7)$ and $F_2=\Sigma m(1,2,3,4)$.

PART - C (1 × 15 = 15 Marks)

- 16. a) An asynchronous sequential has two internal states and one output. 15,K2,CO5 The excitation and output functions describing the circuit are
 - $Y_1 = x_1 x_2 + x_1 y_2 + x_2 y_1$

 $Y_2 = x_2 + x_1 \ y_1' \ y_2 + x_1' \ y_1$

 $Z = x_2 + y_1$

- (i) Draw the logic diagram of the circuit.
- (ii) Give the transition table and output map.
- (iii) Give a flow table of the circuit.

OR

b) Compare fundamental mode and pulse mode circuits. Explain with an *15,K2,CO5* example transition table and flow table.