		Reg. No.								
	Question Paper Code	12855								
	B.E. / B.Tech DEGREE EXAMI	NATIONS,	, AP	RIL	/ M	AY	2024			
	Third Se	mester								
	Electronics and Commu	nication En	igine	erin	ıg					
	20ECPC301 – DIGITA Regulations	L ELECTF s - 2020	RON	ICS						
	Duration: 3 Hours					Max	Aax. Marks: 100			
	PART - A (10 × 2 = Answer ALL Ou	20 Marks) testions					Marks	K– Level	CO	
1.	Give details about "maxterm" and "minterm".						2	K2	CO1	
2.	Convert the given decimal number to their bi 268.025.	nary equiva	lent	108.	.364	and	2	K2	CO1	

3. Draw the full adder circuit using half adder.

2 K2 *CO2* 2 K1 4. Define priority Encoder. CO25. Draw the state table and excitation table of the T flip flop. 2 K2 CO32 6. Differentiate between the edge triggering and level triggering. K2 *CO3* 7. State the types of sequential circuits 2 K1CO48. Define synchronous sequential circuit 2 K2CO49. List the major differences between PLA and PAL 2 K2 CO6 2 10. Define power dissipation and propagation delay. K1 CO6

PART - B $(5 \times 13 = 65 \text{ Marks})$

		Answer ALL Questions			
11.	a)	Use Quine Mccluskey method to simplify the given expression and	13	K3	COI
		verify your result using K-map.			
		$F(A,B,C,D) = \sum (0,2,3,5,7,9,11,13,14)$			
		OR			
	b) (i)	Express the Boolean functions F=A+B'C in a sum of minterms.	6	K2	COI
	(ii)	Express the following boolean expression in a simplified form	7	K2	COI
		using Boolean algebra.			
		a) $\mathbf{v}'\mathbf{v}'\mathbf{z}+\mathbf{v}'\mathbf{v}\mathbf{z}+\mathbf{v}\mathbf{v}'$			

a) x´y´z+x´yz+xy b) xyz+x'z+yz

13 K2 CO2 12. Construct a 4 bit BCD adder using full adder and explain its a) structure and compute the circuit to add 1001 and 0101.Write the sum and carry output of the given binary number.

OR

	b)	Construct a 4-bit comparator using logic gates.		K2	<i>CO2</i>			
13.	a)	Explain the operation of master slave flip flop and show how the race around condition is eliminated.	13	K2	<i>CO3</i>			
OR								
	b) (1)	Convert JK flip flop to T flip flop.	/	K2	03			
	(ii)	Explain the operation of D flip flop with neat diagram.	6	K2	СО3			
14.	a)	Construct a MOD-10 synchronous counter using JK flip flops. Write an execution table and state table. OR	13	K2	<i>CO4</i>			
	b)	Explain the different hazards in Combinational and sequential circuit.	13	K2	<i>CO4</i>			
15.	a)	Use PLA to Implement the following functions. $A(x,y,z) = \sum m(1,2,4,6)$ $B(x,y,z) = \sum m(0,1,6,7)$ $C(x,y,z) = \sum m(2,6)$	13	K2	<i>CO6</i>			
	OR							
	b)	Compare PROM, EPROM and EEPROM technologies.	13	К3	<i>CO6</i>			

PART - C (1×15 = 15 Marks)

16. a) An asynchronous sequential has two internal states and one output. ¹⁵ K³ CO⁵ The excitation and output functions describing the circuit are Y1 = X₁ X₂+ X₁Y₂'+X₂'Y₁ Y2 = X₂ + X₁ Y₁' Y₂+ X₁' Y₁ Z = X₂+Y₁
(i) Draw the logic diagram of the circuit
(ii) Give the transition table and output map Give a flow table of the circuit.
OR
b) An asynchronous sequential circuit is described by the excitation ¹⁵ K³ CO⁵

b) An asynchronous sequential circuit is described by the excitation ¹⁵ K3 CO5 and output functions.

$$Y = X_1 X_2' + (X_1 + X_2')Y$$

(i) Draw the logic diagram of the circuit

(ii) Give the transition table and output map

Give a flow table of the circuit