				· ·		,		-				
		Reg	g. No.									
	Question Paper C	ode	12383									
	B.E. / B.Tech DEGREE EX	KAMI	NATI	ON	S, NO) V	/ DE	C 2	023			
	Thir	d Sem	nester									
	Electronics and Con	ımuni	ication	En	ginee	erin	g					
	(Common to Computer and	d Com	nmunic	atio	n Eng	gine	erin	g)				
	20ECPC302 - ELECTROMAGN	ETIC	FIEL	DS	AND	W	AVI	EGU	JID	ES		
	(Regula	ations	2020)									
D	uration: 3 Hours						М	ax.	Maı	ks:	100	
	PART - A (10	$0 \times 2 =$	= 20 M	lark	(s)							
	Answer A	ALL Q	uestioi	ns							Ma	ırks.
1.	Compare orthogonal and non-orthogonal coordinate systems.									L	K-Lev 2,K2	r el, CO ,CO1
2.	Justify that electric field is conservative.										2,K2,	CO1
3.	State vector form of coulombs law.										2,K1,	<i>CO2</i>
4.	Write the relation between current I and current density J.									2,K2,	CO2	
5.	State the concept of permeability and its unit.									2,K1,	CO3	
6.	Express the self and mutual inductance.								2,K2,	CO3		
7.	Write the Faraday's law of induction.								2,K2,	CO4		
8.	What is uniform wave?								2,K2,	<i>CO4</i>		
9.	Why TEM mode is not possible in a rectangular waveguide?									2,K2,	<i>CO6</i>	
10.	What is meant by dominant mode of	the wa	ave?		0						2,K2,	CO6
	PART - B (5	× 13 =	= 65 M	[ark	(S)							
	Answer A	LL Q	uestion	ns	,							
11.	a) Write the infinitesimal displace	ment,	surface	e, ar	nd vo	lun	ne el	eme	nts	in	13,K2	2,CO1
	spherical and cylindrical coordin	ates.										
	(b) (i) Summarize the use of Usl	JK mholt	z'a th	00*0	m in	1	antro	mo	mot	ic	6.K?	CO1
	engineering.		25 UI	core	111 III	. 01		maş	gnet	.10	- 112	,001

(ii) State and formulate Stokes theorem to relate line integral and *7,K2,C01* surface integral.

12. a) Find the magnetic field at the distance s from a long straight wire ^{13,K2,CO2} carrying a steady current I by using Biot savart law and Ampere's law.

OR

b) Four point charges each of 10μ C are placed in free space at the points ^{13,K2,CO2} (1, 0, 0), (-1, 0, 0), (0, 1,0) and (0, -1, 0) m respectively. Determine the force on a point charge of 30μ C located at a point (0, 0, 1) m.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12383

13. a) (i) A cylindrical capacitor consists of an inner conductor of radius 'a' ^{8,K2,CO3} and an outer conductor whose inner radius is 'b'. The space between the conductors is filled with a dielectric permittivity ε_r and length of the capacitor is L. Derive the expression for the capacitance.

(ii) Derive the expression for the capacitance of an isolated sphere. 5,K2,CO3

OR

- b) Derive the boundary conditions of the normal and tangential ^{13,K3,CO3} components of electric and magnetic field at the interface of two media with different dielectrics.
- 14. a) Derive the Maxwell's equation for a time varying are modified for time ^{13,K2,CO4} varying from fundamental laws of electric and magnetic fields.

OR

- b) Derive the nonhomogeneous wave equation for the scalar electric and 13,K2,CO4 vector magnetic potentials. Comment on the solutions to these equations.
- 15. a) Deduce the expressions for the field components of TM waves guided ^{13,K2,CO6} along a rectangular wave guide.

OR

b) Derive the expressions for the field components of TE waves guided ^{13,K2,CO6} along circular waveguide.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Derive the necessary equations and discuss in detail the wave ^{15,K2,CO5} propagation in a good conducting medium and good dielectric medium.

OR

b) Define Group velocity. Derive an expression for group velocity in ^{15,K2,CO5} terms of phase velocity. Comment on the expression derived.