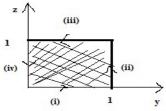
	R	eg. No.											
	Question Paper Code	1	13159										
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024													
Third Semester													
Electronics and Communication Engineering													
	20ECPC302 - ELECTROMAGNET	IC FIELI	DS AND) WAV	/EGU	IDES							
Regulations - 2020													
Du	ration: 3 Hours					Ν	lax. Ma	x. Marks: 100					
	PART - A (MCQ) (20	$\times 1 = 20$	Marks)				Marks	K – Level	<i>c</i> 0				
	Answer ALL Q	-											
1.	If vectors $ A.B = A \times B $, then angle between A and 2 (a) 90° (b) 60° (c)	B 1s c) 45°			(d) 30	C	1	ΚI	<i>CO1</i>				
2.	What is the physical significance of the curl of a vec	/			(u) 30		1	K1	CO1				
2.	(a) It represents the source or sink of the field												
	(b) It represents the rotation or vorticity of the field												
	(c) It represents the magnitude of the field	.1											
3.	(d) It represents the direction of maximum change in The position vector of the point $(1, 2, 0)$ is	n the field	L				1	К2	CO1				
5.		c) $i + j + j$	-k	(d	l) 2j +	k							
4.	The force between two charges is 120 N. If the dis	/ 0		· ·	· •		ed, ¹	K1	<i>CO2</i>				
	the force will be												
F	(a) 60 N (b) 30 N (c) 40 I		10 ⁻⁶ T	(d)	15 N	1	- f 1	K٦	CO2				
5.	Find the magnetic field intensity when the flux dens air	sity is 8 x	10 Ie	sia in i	the me	aium	of 1	Κ2	02				
	(a) 6.36 (b) 3.66 (c) 6.4	63		(d	l) 3.36								
6.	The relation between flux density and vector potenti			(,		1	K2	<i>CO2</i>				
_	(a) $B = Curl(A)$ (b) $A = Curl(B)$ (c) $B = Div(A)$ (d) $A = Div(B)$								<i></i>				
7.	7. What happens to the electric held strength when a delectric is introduced between							KI	CO3				
	charged plates? (a) Increases (b) Decreases (c) Rem	ains the s	ame	(d) I	Becom	es zei	ro						
8.	A parallel plate capacitor has plates of area 0.1 m ²			~ /				K2	CO3				
	between the plates has a relative permittivity of 4, what is the capacitance?												
0	(a) 177 pF (b) 354 pF (c) 70			~ /	416 pH		1	K2	CO3				
9.	In a magnetic circuit, the magnetic reluctance is electric circuit?	analogo	us to w	hich c	quantit	y in	an ¹	Λ2	05				
		Inductan	ce	(d) Cc	onduct	ance							
10.	The displacement current is introduced to modify w						1	K1	<i>CO</i> 4				
	(a) Gauss's law (b) Coulomb's law (c) Farad			Ampe					604				
11.	Which of the following describes the relationship fields in an electromagnetic ways in fine grace?	b between	n the el	ectric	and n	nagne	tic 1	KI	<i>CO4</i>				
	fields in an electromagnetic wave in free space? (a) The electric field and magnetic field are in phase	e and pern	endicul	ar to ea	ach oth	er							
	(b) The electric field and magnetic field are in phase and parallel to each other												
	(c) The electric field lags behind the magnetic field	by 90 deg											
10	(d) The electric field and magnetic field are out of p			1	0		1	V^{1}	<i>CO4</i>				
12.	Which of Maxwell's equations explains the absence (a) Gauss's law for electricity	-	Farada	-			1	Λ1	004				
	(c) Gauss's law for magnetism		Ampere										
	~												

13.	What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric, or good conductor?							
	(a) Attenuation constant (b) Constitutive parameters $(\mu, \varepsilon, \sigma)$							
	(c) Loss tangent (d) Reflection coefficient		77.1	<i>co.</i>				
14.	In a lossless medium, the electric and magnetic fields of a plane wave are	1	KI	<i>CO5</i>				
	(a) Perpendicular to each other and to the direction of propagation							
	(b) Parallel to each other(c) Opposite to each other in magnitude							
	(d) Perpendicular to each other but parallel to the direction of propagation							
15.	When a plane wave propagates through a low-loss dielectric, the attenuation constant α is	1	K1	<i>CO</i> 5				
	(a) Zero (b) Very large (c) Very small (d) Infinity							
16.	The Poynting theorem describes	1	K1	<i>CO</i> 5				
	(a) The relationship between electric and magnetic fields							
	(b) The conservation of energy in electromagnetic fields							
	(c) The dependence of power flow on frequency (d) The rote at which electric field strength decays							
17	(d) The rate at which electric field strength decays The waveguide (a = 1.5 cm, b = 1 cm) is loaded with a dielectric (ε_r = 4). Which one of	1	K2	<i>CO</i> 6				
17.	the following is correct? The 8 GHz signal will							
	(a) pass through the waveguide (b) not pass through the waveguide							
	(c) be absorbed in the guide (d) none of the above.							
18.	Which of the following is not possible in a circular waveguide?	1	K1	<i>CO6</i>				
10	(a) TE10 (b) TE01 (c) TE11 (d) TE12	1	VI	<i>C</i> 06				
19.	An evanescent mode occurs when	1	K1	<i>CO6</i>				
	(a) A wave is attenuated rather than propagated.(b) The propagation constant is purely imaginary.							
	(c) $m = 0 = n$ so that all field components vanish.							
	(d) The wave frequency is the same as the cutoff frequency.							
20.	The dominant mode of a circular waveguide has a cut-off frequency of 6 GHz. If the							
	frequency of the wave is 12 GHz, the ratio of the guide wavelength to the free-space							
	wavelength is:							
	(a) 0.5 (b) 2 (c) 1 (d) 1.5							
	DADT \mathbf{D} (10 \times 2 – 20 Marks)							
	PART - B (10 × 2 = 20 Marks) Answer ALL Questions							
21.	Express the following vector $A = \rho (z^2 + 1)a_{\rho} - \rho z \cos \varphi a_{\varphi}$ in Cartesian coordinates.	2	K2	<i>CO1</i>				
22.	Define Helmholtz's Theorem.	2	K1	CO1				
23.	An infinite line charge is uniformly charged with a line charge density of 20n C/m along	2	K2	<i>CO2</i>				
	the z axis. Find E at $(6,8,3)$ m.							
24.	Define Lorentz's force equation.	2	K1	<i>CO2</i>				
25.	Compare self inductance and mutual inductance.	2	K2	CO3				
26.	Explain the importance of the uniqueness theorem in electrostatics.	2	K2	CO3				
27.	What is displacement current, and how does it modify Ampere's Law to include time-	2	K1	<i>CO</i> 4				
	varying electric fields?	•	•••	<i>a</i> :				
28.	Outline the fundamental postulate of electromagnetic induction.	2	Kl	CO4				
29.	Find the cut - off frequency of circular waveguide with 2.36 cm diameter filled with air in dominant mode (ha)11 = 3.85	2	K2	CO5				


in dominant mode (ha)11 =3.85. 30. What is the dominant mode of circular waveguide and Why? 2 K1 CO6

PART - C ($6 \times 10 = 60$ Marks) Answer ALL Questions

31. a) Given that $= 2xy a_x + 3 a_y - yz^2 a_z$, Evaluate $\oint_s A \cdot ds$ where S is the surface ¹⁰ K³ CO1 of the cube defined by $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$. Also, verify the result by applying divergence theorem.

OR

b) Suppose $V=y^2i + (2xy+z^2) j + (2yz) k$. Apply Stoke's theorem for the square 10 K3 CO1 surface shown in the figure.

32. a) Apply gauss law to find charge enclosed in hollow sphere whose surface is ¹⁰ K3 CO2 uniformly charged.

OR

- b) Use amperes cicuital law to determine the magnetic field intensity of coaxial cable. 10 K3 CO2
- 33. a) State and explain the electric boundary conditions between two different dielectric 10 K2 CO3 media.
 - OR
 - b) Derive an expression for inductance of a Co axial Cable 10 K2 CO3
- 34. a) Derive Maxwell's equation in both integral and differential forms from basic laws 10 K2 CO4 and explain its significance.

OR

- b) Explain Motional emf and transformer emf using Faraday's law of electromagnetic 10 K2 CO4 induction
- 35. a) Illustrate the wave propagation in a lossless dielectric and free space with relevant $10 K^2 CO^5$ equations.

OR

- b) Derive the expressions for the attenuation constant, phase constant and intrinsic 10 K2 CO5 impedance for a uniform plane waves in a good conductor.
- 36. a) Examine the propagation of Transverse Electric mode in a circular waveguide. 10 K3 CO6 OR
 - b) A 2-cm by 3-cm waveguide is filled with a dielectric material with $\varepsilon_r = 4$. If the ¹⁰ K3 CO6 waveguide operates at 20 GHz with TM11 mode, find: (a) cutoff frequency, (b) the phase constant, (c) the phase velocity.