leg. No.								

Question Paper Code

12823

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Third Semester

Electronics and Communication Engineering

(Common to Computer and Communication Engineering)

20ECPC302 - ELECTROMAGNETIC FIELDS AND WAVEGUIDES

Regulations - 2020

Dur	ration: 3 Hours Max.	Ma	rks:	100
	PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K– Level	со
1.	Define Magnetic Vector Potential.	2	Kl	<i>CO2</i>
2.	A uniform spherical volume charge distribution contains a total charge of 10^{-8} C. If the radius of the spherical volume is 2×10^{-2} m, find ρ_v .	2	K2	<i>CO2</i>
3.	Define magnetization.	2	K1	CO3
4.	Find the capacitance of the capacitor with a stored energy of 10 μ J with an applied voltage of 5 volts.	2	K2	СО3
5.	List the properties of uniform plane waves.	2	K1	<i>CO</i> 4
6.	In a medium, the electric field intensity $E = 10\sin(1000t-10x)$ axe /m. calculate the displacement current density ($\varepsilon_r = 80$, $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m).	2	K2	<i>CO4</i>
7.	Prove that intrinsic impedance of free space is 377 ohm.	2	<i>K1</i>	CO5
8.	Find the intrinsic impedance of perfect dielectric having dielectric constant $\varepsilon_r = 3$ and $\mu_r = 6$.	2	K2	CO5
9.	Write the relationship between phase velocity and group velocity.	2	K1	<i>CO6</i>
10.	Define dominant mode and degenerate mode in a waveguide.	2	K1	<i>CO6</i>

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) Derive an expression for electric field intensity at any point due to an ¹³ K³ CO² infinite uniformly charged sheet with density $\rho_{\rm S} \, C/m^2$.

OR

- b) i) State and explain the Ampere's Circuital law.
 ii) Using Ampere's Circuital law derive the magnetic field intensity of 10 K3 CO2 coaxial cable at all regions.
- 12. a) In a slab of dielectric material for which $\varepsilon = 2.4 \varepsilon_0$ and V=300z² V, ¹³ K² CO³ Find (i) **D** and ρ_v (ii) **P** and ρ_{pv} .

OR

b) Derive the boundary conditions of the normal and tangential ¹³ K3 CO3 components of electric and magnetic field at the interface of two media with different dielectrics.

12823

		and displacement current density is $\sigma/\omega\varepsilon_r$.			
	ii)	For the applied field E , deduce the amplitude ratio if the $E = E_m e^{-t/\lambda}$ where λ is real constant.	8	K3	<i>CO4</i>
		OR			
	b)	Derive the non homogeneous wave equation for the electric and magnetic fields. Comment on the solutions to these equations.	13	К3	<i>CO4</i>
14.	a)	Show that Energy produced per unit volume per second is equal to sum of energy stored per unit volume per second and the energy crossed per unit volume per second.	13	K3	CO5
	b)	Derive the necessary equations and discuss in detail the wave propagation in a good conducting medium and good dielectric medium.	13	K3	CO5
15.	a)	An air filled rectangular copper waveguide with a = 2.28 cm and b = 1.01 cm cross section and $1=30.48$ cm is operated at 9.2 GHz with a dominant mode. Find the cut off frequency, guide wavelength, phase velocity and characteristic wave impedance.	13	К3	<i>CO6</i>
	b)	Describe the propagation of TE waves in a rectangular waveguide with necessary expressions for the field components.	13	K2	CO6
		PART - $C(1 \times 15 = 15 \text{ Marks})$			
16.	a)	Find out the curl of each of the vector field $A = yza_x + 4xya_y + ya_z \text{ at } (1,-2,3)$ $B = \rho z \sin \phi a_\rho + 3\rho z^2 \cos \phi a_\phi \text{ at } (5, \pi/2,1)$ $C = 2r \cos \theta \cos \phi a_r + r^{0.5} a_\phi \text{ at } (1, \pi/6, \pi/3).$	15	К3	<i>CO1</i>
	b)	OR Prove the Stoke's theorem for a flat square surface in the XY plane bounded by(000),(1,0,0),(1,1,0)&(0,1,0) where the vector field function is $F = 2xy a_x - y a_z$.	15	K3	<i>CO1</i>

13. a) i) Show that the ratio of the amplitude of the conduction current density ⁵ K3 CO4