Question Paper Code

12634

B.E. / B.Tech. - DEGREE EXAMINATIONS, APRIL / MAY 2024

Fourth Semester

Electronics and Communication Engineering 20ECPC401 – COMMUNICATION THEORY

Regulation - 2020

Duration: 3 Hours	Max. Marks: 100
PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks K– CO Level
1. Compare the DSB-SC AM signal with SSB-SC AM signal.	2 K2 CO1
2. In a DSB-FC-AM signal the carrier power is $P_c = 100$ W wit modulation index of 0.67, compute the total power.	h the ² K2 CO1
3. Determine the bandwidth required for a FM wave in which the modu frequency signal is 2KHz and the maximum frequency deviation is 12K	•
4. Illustrate the relationship between FM and PM with a block diagram.	2 K2 CO2
5. Enumerate the merits and demerits of balanced slope detector.	2 K1 CO3
6. Compare bandwidth and power requirement in terms of carrier power AM, DSB-SC, and SSB.	P_c for ² K2 CO3
7. Distinguish discrete random variable and uniform random variable.	2 K2 CO4
8. Illustrate Einstein-Wiener –Khintchine relation.	2 K2 CO4
9. Discuss the need for pre-emphasis and de-emphasis.	2 K2 CO5
10. Interpret figure of merit of a communication system.	2 K1 CO5

PART - B $(5 \times 13 = 65 \text{ Marks})$

Answer ALL Questions

- 11. a) i) Derive the mathematical expression of AM signal using the square 7 K2 CO1 law method.
 - ii) Draw the diagram of switching modulator and explain the generation 6 K2 CO1 of amplitude modulated signal.

OR

- b) i) Derive the equation of an AM wave. Also draw the modulated AM ⁸ K² CO1 wave for various modulation indexes.
 - ii) A 100 KHz carrier is simultaneously AM modulated with 800Hz ⁵ K2 CO1 audio sine wave. Calculate the frequency of lower and upper sidebands.

12634

12. a) i) A carrier frequency of 80MHz is frequency modulated by a sine wave 8 K2 CO2 amplitude of 1volts and frequency of 10KHz and the frequency sensitivity of the modulator is 100Hz/V. Assess the appropriate bandwidth of the FM wave.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

	ii)	Compare the characteristics of Frequency modulation.	5	K2	<i>CO2</i>
	b)	Describe how FM generation is achieved using Varactor and reactance modulators.	13	K2	<i>CO2</i>
13	a)	Illustrate the functions of the building blocks of phase locked loop and explain how it can be used for FM demodulation. OR	13	K2	СО3
	b)	Explain the working of the super heterodyne receiver with a neat block	13	K2	CO3
14.	a) i)	diagram. Interpret the process of autocorrelation and explain the properties of	7	K2	<i>CO4</i>
1.11	<i>a)</i> 1)	autocorrelation function.			
	ii)	Illustrate the terms mean, correlation, covariance and ergodicity. OR	6	K2	<i>CO4</i>
	b) i)	Consider two linear filters connected in cascade. Let $X(t)$ be a stationary process with an auto correlation function $Rxx(\tau)$, the random process appearing at the input of the first filter is $V(t)$ and the second filter output is $Y(t)$.	6	K2	<i>CO4</i>
		a) Find the auto correlation function of Y(t)			
	ii)	b) Compute the cross correlation function $Rxy(\tau)$ of V(t) and Y(t) Derive the input and output relation of the signal transmitted through the Linear Time Invariant (LTI) filter.	7	K2	<i>CO4</i>
15.	a)	Analyze the features of coherent detector. Derive an expression for SNR at input (SNR _c) and output of (SNR _o) of a coherent detector.	13	K2	CO5
OR					
	b)	Discuss the noise performance of FM receivers with neat diagram. PART - C $(1 \times 15 = 15 \text{ Marks})$	13	K2	CO5
16.	a)	The T1 carrier system used in digital Telephony multiplexes 24 voice channels based on 8 but PCM. Each voice signal is out through a LPF with cut off frequency of 3.4KHz. The LPF output is sampled at 8 KHz. Then a single bit is added at the end of the frame for the purpose of synchronization. Calculate a) Bit duration b) Transmission Rate c) Nyquist Bandwidth	15	K2	C06
16	b) ;)	OR	8	к?	<i>CO6</i>
10	0)1)	Let the maximum spectral frequency component (fm) in an analog information signal be 3.3khz. Can you identify the frequency spectral of sampled signal under the following relationships between the sampled frequency (fs) and maximum analog signal frequency (fm) a) fs=2fm b) fs>2fm & fs <2fm	0	112	
	ii)	Illustrate the concept of Non Uniform Quantization and mention the Laws for implementing the same.	7	K2	<i>CO</i> 6