	Reg. No.									
	Kcg. N0.									
	Question Paper Code 1	3108								
	B.E. / B.Tech DEGREE EXAMINATIO	NS, NO	OV.	/ DE	C 20	24				
	Fifth Semester	,								
	Electronics and Communication E	Ingine	erin	g						
	20ECPC501 - DIGITAL COMMU	-		-						
	Regulations - 2020									
Dr	uration: 3 Hours						Max	Mar	ks· 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ N})$	Aarbe)								
	Answer ALL Questions	1a1 K5)	,					Marks	K – Level	СО
1.	Amount of Information is represented by							1	K1	COI
1.	(a) lk (b) Pk (c) $1/Pk$ (d) l	H								
2.								1	K1	<i>CO1</i>
	(a) $H(Y, Z/X) \le H(Y/X) + H(Z/X)$ (b) $H(Y, Z/X) \le$	= H(Z)	Z/X)	+ H(Y/X)				
	(c) $H(Y, Z/X) = H(Y/X) + H(Z/X, Y)$ (d) All of the ab	· ·	,	()				
3.								1	K1	CO1
	(a) Conditional entropy (b) Joint	t entrop	ру							
	(c) Individual entropy (d) None	e of the	e me	ntior	led					
4.	Which of the following reduces redundancy?							1	K1	<i>CO2</i>
	(a) Source coding (b) Chan	nel coo	ding							
	(c) Both source coding and channel coding (d) None		e me	entio	ned					
5.		bit.						1	K1	CO2
	(a) Increases (b) Decreases (c) Has no effect	(d) No								
6.	The efficiency η of the code for DMS with source probabilitie	s {0.35	5, 0.	25, 0	.20,	0.15	,	1	K2	<i>CO2</i>
	0.05} is		(1)	04.0	0 /					
7	(a) 95.4% (b) 96.5% (c) 96.4%		(d)	94.6	%			1	K2	CO3
7.	In unipolar line encoding 1 and 0 is represented as							1	<u>K2</u>	005
	(a) $0 \rightarrow 1, 1 \rightarrow -p(t)$ (b) $0 \rightarrow 0, 1 \rightarrow p(t)$									
	(c) $0 \rightarrow 0, 1 \rightarrow -p(t)$ (d) None of the above									
8.	Quantising noise can be reduced by increasing the							1	K1	СОЗ
	(a) Number of standard quantum levels (b) Samplin	g rate								
	(c) Bandwidth (d) All of t	he abo	ve							
9.	Sample resolution for LPCM bits per sample							1	K1	CO3
10	(a) 8 (b) 16 (c) 24 (d) All of	the abo	ove						77.1	<i>co</i> (
10.	Examples of nyquist filters are	• 61						1	K1	<i>CO4</i>
	(a) Root raised cosine filter (b) Raised cos			1						
11	(c) Root raised & amp; Raised cosine filter (d) None of the	ne men	ition	ea				1	K1	<i>CO4</i>
11.	For AWGN, the noise variance is (a) N $(2 - 1)$ (b) N $(2 - 1)$ (c) 2 N (d) N	T / A						1	K1	0.04
12.	(a) N_0 (b) $N_0/2$ (c) 2 N_0 (d) N in the transmitted signal results in a carrier offset	N ₀ /4						1	K1	<i>CO4</i>
12.	(a) Power spectral density (b) Signal energy									001
	(c) Symbol synchronization (d) Propagation d									
13	Symbol rate is also called	oluy						1	K2	CO5
	(a) Bit rate (b) Baud rate (c) Sign rate	(d) A	All o	f the	abov	/e				
14.	Which is called as on-off keying?	(91)			-			1	K1	CO5
	(a) Amplitude shift keying (b) Uni-p	olar PA	AM							
	(c) Amplitude shift keying & Uni-polar PAM (d) None			ntion	ed					

15.	FSK reception uses	1	K1	CO5
	(a) Correlation receiver (b) PLL			
	(c) Correlation receiver & PLL (d) None of the mentioned			<i>a</i>
16.	Which system uses QAM?	1	KI	CO5
	(a) Digital microwave relay (b) Dial up modem (d) Name of the montioned			
17	(c) Digital microwave relay & Dial up modem(d) None of the mentionedHow many redundant bits are added in block codes for k information bits and n code bits?	1	K2	<i>CO6</i>
17.	(a) $n+k$ (b) $n-k$ (c) k^2 (d) n^2	-		000
18.	The cyclic codes are designed using	1	K2	<i>CO6</i>
10.	(a) Shift registers with feedback (b) Shift registers without feedback			
	(c) Flipflops (d) None of the mentioned			
19.	In Viterbi's algorithm, which metric is adopted for decision making?	1	K2	<i>CO6</i>
	(a) Hamming distance (b) Galois Field (c) Hamming bound (d) Parity-check			
20.	Example for convolution encoder state diagram is	1	K2	<i>CO6</i>
	(a) Tree diagram (b) Trellis diagram			
	(c) Tree & Trellis diagram (d) None of the mentioned			
	PART - B $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions			
21	What is Uncertainty?	2	<i>K1</i>	CO1
21.		2	K2	CO1
<i>LL</i> .	transmitter and Y is the receiver.	2	112	001
23.	If the source efficiency of a DMS is 82% then determine code redundancy.	2	K2	<i>CO2</i>
	Distinguish the different source coding techniques.	2	K2	CO2
	Why is delta modulation superior to Differential pulse code modulation?	2	K2	CO3
		2	K2	CO3
26.	1	-		
27.	1	2	K2	<i>CO4</i>
28.	Illustrate the eye pattern with a diagram.	2	K2	<i>CO4</i>
29.	Differentiate coherent detection and non-coherent detection.	2	K2	CO5
30.	Define syndrome decoding.	2	K1	<i>CO6</i>
	PART - C (6 × 10 = 60 Marks)			
	Answer ALL Questions			
31.	a) Explain the following	10	K2	COI
	(i) Mutual information and its properties.			
	(ii) Channel capacity and its equation			
	OR			
	b) A black and white TV picture consists of about 2×106 picture elements with 16	10	K2	<i>CO1</i>
	different brightness levels, with equal probabilities. If pictures are repeated at the			
	rate of 32 per second, calculate the average rate of information conveyed by this TV			
	picture source. If SNR is 30dB, Analyze the minimum bandwidth required to support the transmission of the resultant video signal.			
	the transmission of the resultant video signal.			
32.	a) A discrete memoryless source has an alphabet of five symbols whose probabilities of	10	K3	<i>CO2</i>
54.	a) A discrete memoryless source has an alphabet of five symbols whose probabilities of occurrence are as described below. Compute the Huffman code for this source. Also			

32. a) A discrete memoryless source has an alphabet of five symbols whose probabilities of 10 K3 CO2 occurrence are as described below. Compute the Huffman code for this source. Also calculates the efficiency of the source encoder. Symbols: {X1, X2, X3, X4, X5} Probability: {0.2, 0.2, 0.1, 0.1, 0.4}.

OR

	b)	Five symbols of the alphabet of discrete memory less source and their probabilities are given as $\{S1,S2,S3,S4,S5\}$ and $\{0.4,0.19,0.16,0.15,0.10\}$. Construct using Shannon-fano Coding and Calculate the code efficiency.	10	К3	<i>CO2</i>
33.	a)	Explain in detail about Delta Modulation with neat diagrams and explain its disadvantages.	10	K2	CO3
		OR			
	b)	Derive and draw the Power Spectra of Bipolar NRZ.	10	K2	СО3
34.	a)	Explain modified Duobinary signaling scheme with a neat diagram.	10	K2	CO4
		OR			
	b)	Describe in detail about correlative coding to eliminate ISI.	10	K2	<i>CO4</i>
35.	a)	Explain in detail about QAM generation, signal space representation, and PSD. OR	10	K2	CO5
	b)	Derive the Error Probability of coherently detected BPSK.	10	K2	CO5
36.	a)	The Generator Matrix for a (7,4) block code is given below. Find all code vectors of this code.	10	K3	<i>CO</i> 6

1	0	0	0	1	1	0
0	1	0	0	0	1	1
0	0	1	0	1	0	1
0	0	0	1	1	1	1

- (i) Determine P sub matrix from generator matrix
- (ii) List all the code vectors
- (iii) Find the minimum distance between code vectors
- (iv) Determine Error detection and error correction capability.

OR

b) Determine the generator polynomial g(D) for a (7,4) cyclic code is given by ¹⁰ K3 CO6 $g(D)=1+D+D^3$ and find all the code vector for systematic and non-systematic cyclic codes.