Reg. No.								
Question Paper Code12893								
B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024								
Fifth Semester								
Electronics and Communication Engineering								
20ECPC501 - DIGITAL COMMUNICATION								
Regulations - 2020								
Duration: 3 Hours Max	C C							
PART - A (10 × 2 = 20 Marks) Answer ALL Questions	Marks	K– S Level	CO					
1. Define information rate.	2	Kl	CO1					
2. What is the channel capacity of a BSC and BEC?	2	Kl	CO1					
3. Why delta modulation is superior to Differential pulse code modulation?	2	K2	CO3					
4. State any four desirable properties of a line code.	2	K1	CO3					
5. Explain the eye pattern is obtained on a CRO.	2	K2	<i>CO4</i>					
6. Define the principle of adaptive equalization.	2	K1	<i>CO4</i>					
7. Illustrate the need for geometric representation of signals.	2	K2	CO5					
8. Draw the waveform for the binary data sequence 101010 modulated under ASK, PSK, FSK.	2	K2	CO5					
9. What are cyclic codes? Mention its properties.	2	K1	<i>CO6</i>					
10. Express the syndrome properties of linear block code.	2	K1	<i>CO6</i>					

PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions

- 11. a) i) Define entropy and explain it briefly along with the properties of 6 K2 CO1 entropy.
 - ii) Explain BSC and derive the Channel Capacity For Binary Symmetric 7 K2 CO1 Channel.

OR

b) i) Two BSC's are connected in cascade as shown in figure below 7 K2 CO1

 $\begin{array}{c} x_1 \\ x_2 \\ x_2 \\ 0.8 \\ y_2 \\ 0.8 \\ y_2 \\ 0.8 \\ y_2 \\ 0.7 \\ 0.7 \\ z_1 \\ 0.3 \\ z_2 \\ 0.7 \\ z_2 \end{array}$

Find the channel matrix of resultant channel & Find P(z1) & P(z2) if P(x1)=0.6 and P(x2)=0.4

ii) State and prove the properties of mutual information. 6 K2 CO1

12893

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

12.	a) i)	What is the need for Adaptive Delta Modulation and how it overcomes the drawback of delta modulation?	6	K2	СО3					
	ii)	Explain the features of adaptive delta modulation with transmitter and	7	K2	CO3					
		receiver.								
OR										
	b)	Explain the principle, generation and reconstruction of DPCM System in detail.	13	K2	<i>CO3</i>					
13.	a)	What is ISI? List the different methods to remove ISI in a communication system. Also state and prove Nyquist first criterion for Zere ISI	13	K2	<i>CO4</i>					
		Zero ISI.								
		OR			~~ .					
	b)	Explain in detail the principle of matched filter and Correlation filter.	13	K2	CO4					
14.	a) i)	Draw the transmitter, receiver block diagram of BFSK.	7	K2	<i>CO5</i>					
	ii)	Explain its signal space diagram and Band width in detail.	6	K2	<i>CO5</i>					
OR										
	b) i)	Draw the transmitter, receiver block diagram of QPSK.	7	K2	CO5					
	ii)	Explain its signal space diagram and Band width in detail.	6	K2	CO5					
15.	a)	The Generator Matrix for a (6,3) block code is given below. Find all code vectors of this code.	13	K3	<i>CO6</i>					

1	0	0	0	1	1	
0	1	0 0 1	1	0	1	
0	0	1	1	1	0	

(i) Determine P sub matrix from generator matrix and Parity Check Matrix.

(ii) Obtain equation for check bits using C=MP.

(iii) Determine check bits for every message vector.

- (iv) Decode 111011 using syndrome Decoding.
- (v) Prove that syndrome can detect only one error.

OR

- b) A 1/3 rate Convolution code has the following generators $g_1=[100]$, ¹³ K3 CO6 $g_2=[101]$ and $g_3=[111]$.
 - (i) Draw the Encoder circuit corresponding to the code.

(ii) Draw state table, State Diagram.

(iii) Determine output digit sequence for the data 1 1 0 1 0 1 0 0 using transform domain approach.

2

(iv) Draw the Trellis diagram for this code.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Encode the following messages with their respective probability using ¹⁵ K3 CO2 basic Huffman algorithm.

Message: x1, x2, x3, x4, x5, x6 Probability: 0.2,0.3,0.11,0.16,0.18,0.05 Compute the Huffman code and Shannon fano coding for this source. Also calculates average code word length, efficiency and variance of the source encoder.

OR

b) A discrete memory less source has an alphabet of seven symbols ¹⁵ K3 CO2 whose probabilities of occurrence are as described below

Symbol : $\{x1, x2, x3, x4, x5, x6, x7, x8\}$

Probability: {0.48, 0.15, 0.1, 0.1, 0.07, 0.05, 0.03, 0.02}.

Compute the Huffman code and Shannon fano coding for this source Also calculates average code word length and the efficiency of the source encoder.