			Reg. No.										
		Question Paper Code	12863										
		B.E. / B.Tech DEGREE EXAMI	NATIONS	. AP	RII	 /	ИАТ	7 2(24				
	Fifth Semester												
	Electronics and Communication Engineering												
	20ECPC502 - VLSI DESIGN												
		Regulations	- 2020										
	Durati	uration: 3 Hours Max. Marks: 1							s: 10	0			
		$PART - A (10 \times 2 =$	20 Marks)						Marks	<u>K</u> -	CO		
1	Where	Answer ALL Qu MOS transistor is calculated as rull down	transistor?						2	Level K1	CO1		
1. ว	why f	Share the sticle discourse of static CMOS 2 insert NAND sate							2	K1			
2. 2	Show the stick diagram of static CMOS 2 input NAND gate.							2	K?	CO^2			
э. Л	Disque	a 2 mput AOK using myOS pass transis	tor logic.						2	K2	CO^2		
4. 5	Discus	ha Distability principla							2	K2	CO3		
5. 6	Defina	Pagisters and Latches							2	K1	CO3		
0. 7	What	are the data types used in Verilog HDI?							2	K1	CO4		
7. 8	Discus	es continuous assignment structure in Ve	rilog						2	K2	<i>CO4</i>		
9.	Give	xample for some high-speed adders	inog.						2	K2	<i>CO5</i>		
). 10.	10. Classify the various memories used in IC design							2	K2	CO5			
10.	Clubbi		5										
		$PART - B (5 \times 13 =$	65 Marks)										
11	a)	Answer ALL Qu Explain in detail with a peat diagr	estions	tha	DC	tre	mafa	5r	13	K2	CO1		
11.	a)	characteristics of a CMOS inverter w	ith necessar	ry c	ondi	tion	ns fo	or					
		the different regions of operation with	neat diagran	n.									
	1 \	OR	1 1'		C	C			12	V٦	<i>CO</i> 1		
	b)	NAND and NOR gate.	draw diagra	ıms	Ior	Iou	r m	out	15	Λ2	COI		
12.	a)	Develop Static and Dynamic power	r dissipatio	n w	vith	rel	evar	ıt	13	K3	<i>CO2</i>		
		expressions.											
	b)	Illustrate DCVSL logic with suitable ex	kample.						13	K2	<i>CO2</i>		
			-										
13.	a)	Develop about CMOS register conce	ept and de	sign	ma	ster	r sla	ive	13	K3	СО3		
		triggered register, explain its operation	with overla	ppın	g pe	r10	ds.						
		UK .	_	-	-					0.(2			
K1	– Reme	nber; K2 – Understand; K3 – Apply; K4 – Anal 1	vze; K5 – Eva	luate	: K6 -	- <i>Ci</i>	eate		12	863			
		1											

	b)) Illustrate the concept of timing issues and pipelining.			CO3				
14.	a)	Discuss and write Verilog module for 4-bit ripple carry adder with test bench.	13	K2	<i>CO4</i>				
OR									
	b)	Explain the compiler directives in detail.	13	K2	<i>CO4</i>				
15.	a)	Discuss the concept of Carry look ahead adder in detail with relevant diagrams. Also mention its advantages and disadvantages.	13	K2	CO5				
	b)	Illustrate the product of +13 and -5 using booth algorithm.	13	K2	CO5				
16.	a)	PART - C ($1 \times 15 = 15$ Marks) Develop in detail about the array-structured memory architecture and the hierarchy memory architecture designs with neat diagrams. OR	15	K3	<i>CO6</i>				

b) Illustrate a 6T based SRAM Cell. Explain its read and write 15 K2 CO6 operations.