Reg. No.																	
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code	12985
----------------------------	-------

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2024

Sixth Semester

Electronics and Communication Engineering 20ECPC603 - WIRELESS COMMUNICATION

Regulations - 2020

Du	ration: 3 Hours	Max. Mai	ks: 1	00
	PART - A (MCQ) $(20 \times 1 = 20 \text{ Marks})$	Manks	<i>K</i> –	co
	Answer ALL Questions	Marks	Level	CO
1.	Which of the following is an ideal antenna?	1	K1	CO1
	(a) Directional antenna (b) Dipole antenna (c) Loop antenna (d) Isotropic antenna			aa.
2.	The Doppler shift in a small-scale fading model primarily affects	1	KI	CO1
	(a) frequency of the transmitted signal (b) transmission power			
2	(c) received signal's frequency due to relative movement (d) antenna polarization	.1 1	V I	CO1
3.	Which fading model is best suited for scenarios with no line-of-sight and strong multip	atn 1	ΚI	COI
	reflections?			
	(a) Rayleigh fading model(b) Ricean fading model(c) Effective two-ray model(d) Free space path loss model			
4.	is based on sequences of numbers called chips.	1	K1	CO2
4.	(a) FDMA (b) TDMA (c) CDMA (d)SDMA	1	11.1	CO2
5.	The capacity of FDMA is limited primarily by	1	K1	CO2
٦.	(a) number of time slots (b) power of each user			
	(c) bandwidth assigned per user (d) processing gain from spreading codes			
6.	The bandwidth of FDMA channels is	1	<i>K1</i>	CO2
	(a) narrow (b) wide (c) infinite (d) zero			
7.	Interference on voice channels causes .	1	<i>K1</i>	CO3
	(a) blocked calls (b) cross talk (c) missed calls (d) queuing			
8.	The time over which a call can be maintained within a cell without handoff is called	1	K1	CO3
	·			
	(a) run time (b) peak time (c) dwell time (d) cell time			
9.	What are co-channel cells?	1	K1	CO3
	(a) Cells having different base stations (b) Cells using different frequency			
	(c) Cells using adjacent frequency (d) Cells using the same frequency			
10.	Which of the following does not impact the bit error rate in mobile communication	1	K1	CO4
	systems?			
1.1	(a) Mobile velocity (b) Channel delay spread (c) Modulation format (d) Base station	n <i>1</i>	K1	CO4
11.	Minimum shift keying is similar to	1	ΚI	CO4
12	(a) BPSK (b) CPFSK (c) BFSK (d) QPSK In fading channels, which modulation scheme is known for being the most robust with	1	K1	CO4
12.	low bit error probability under severe fading conditions?	•	111	007
	(a) 64-QAM (b) BPSK (c) 16-QAM (d) OFDM			
13	Equalization is to compensate	1	<i>K1</i>	CO5
15.	(a) Peak Signal to Noise Ratio (b) ISI (c) channel fading (d) signal noise			
14.	In a frequency-selective fading channel, which technique is most effective in minimizing	1g 1	<i>K1</i>	CO5
	inter-symbol interference?	S		
	(a) Spatial Diversity (b) Frequency Diversity			
	(c) Adaptive Equalization (d) Time Diversity			

15.	What	is a primary disadvantage of equalization techniques in multipath channels?	1	<i>K1</i>	CO5
		ey require significantly more bandwidth			
		ney can introduce latency and require more processing power			
	` /	ey are only effective in time-selective channels			
1.0	` /	ney can only be used with CDMA systems	1	V1	CO5
16.		igh-speed mobile communication environment, which multipath mitigation que is most likely to suffer from performance degradation due to the rapid variation	1	ΚI	COS
		channel's characteristics?			
		atial diversity (b) Frequency diversity			
	· / I	laptive equalization (d) Rake Receiver			
17.		ey requirement for effective beam forming is .	1	<i>K1</i>	CO6
	(a) hig	gh mobility of the transmitter (b) channel state information			
		w power consumption (d) single antenna usage			
18.		is the main goal of transmitter diversity?	1	<i>K1</i>	CO6
		increase transmission range (b) To send multiple copies of the same signal			
10	` /	utilize more frequency bands (d) To reduce the number of antennas	1	<i>K1</i>	CO6
19.		et CSI allows for otimal power allocation and signal processing (b) Increased latency	1	11.1	000
		mplified receiver design (d) Reduced signal-to-noise ratio			
20.		technique is NOT typically used in MIMO systems?	1	<i>K1</i>	CO6
		atial multiplexing (b) Time-division multiplexing			
	(c) Be	ram forming (d) Precoding			
		$PART - B (10 \times 2 = 20 Marks)$			
0.1	D 0"	Answer ALL Questions	2	1/1	G01
		e EIRP.	2	K1	CO1
22.	State	the factors affecting small-scale fading.	2	<i>K1</i>	CO1
23.	List a	ny four important features of FDMA.	2	<i>K1</i>	CO2
24.	Draw	the structure of a TDMA frame.	2	K2	CO2
25.	Justif	y the use of hexagonal-shaped cells in cellular communication.	2	K2	CO3
26.	Defin	e Cell dragging.	2	<i>K1</i>	CO3
		ne linear modulation techniques.	2	<i>K1</i>	CO4
		igh distribution is widely used in wireless communications. Why?	2	<i>K1</i>	CO4
	•	is Equalization?	2	<i>K1</i>	CO5
		1	2		CO6
30.	List ti	ne application of MIMO.	2	ΚI	000
		PART - C $(6 \times 10 = 60 \text{ Marks})$			
		Answer ALL Questions			
31.	a)	Discuss how effective is the link budget in calculating the transmitted or received	10	K2	CO1
	,	power with the knowledge of the losses incurred in a fading channel.			
		OR			
	b)	Explain the ground wave propagation model with a neat diagram and derive the	10	K2	CO1
		expression for the total received power and electric field strength.			
32.	a)	Describe the working principle of the CDMA system. Also, list out the features of	10	K2	CO2
		the CDMA system.			
	• `	OR	10	7/2	G03
	b)	The GSM TDMA system uses a 270.833 kbps data rate to support 8 users per	10	K2	CO2
		frame. Evaluate the following: (a) What is the row data rate provided for each user? (b) If guard time ramp up			
		(a) What is the raw data rate provided for each user? (b) If guard time, ramp-up time, and synchronization bits occupy 10.1 kbps, determine the traffic efficiency			
		for each user.			

33.	a)	Elaborate on co-channel interference and adjacent channel interference in detail.	10	K2	CO3
		OR			
	b)	Explain how handoff is prioritized using the guard channel and umbrella cell approaches.	10	K2	CO3
34.	a)	Explain the GMSK transmitter and receiver. Draw its PSD.	10	K2	CO4
		OR			
	b)	Illustrate the Structure of a wireless communication link with a neat diagram. List the advantages of digital modulation schemes.	10	K2	CO4
35.	a) i)	Explain about the adaptation algorithms for Mean – square error equalizers.	5	K2	CO5
	ii)	Elaborate on the parameters that influence the performance of adaptation algorithms.	5	K2	CO5
		OR			
	b)	What is the principle of Combining Diversity? Explain in detail about various combining techniques with neat block diagrams and necessary equations.	10	K2	CO5
36.	a)	Explain in detail the concept of capacity in fading and non-fading channels with respect to CSI.	10	K2	CO6
		OR			
	b)	Write about Channel State Information (CSI) and how algorithms are classified based on CSI.	10	K2	CO6