		р	NT										
		Re	g. No.										
	Question Paper Code12179												
B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2023													
Seventh Semester Electronics and Communication Engineering													
													20ECPC702 - OPTICAL COMMUNICATION
	(Regulat	tions	2020)										
Dur	ation: 3 Hours							Ma	x. N	Aar	ks:	100)
	PART - A (10	× 2 :	= 20 M	lark	ks)								
	Answer Al	LL Ç	Juestior	15									_
1.	What is a Linearly Polarized Mode?										1 K-L 2,1	Mari Leve K2,(ks, I, CO CO1
2.	The refractive indexes of the Core ar and 1.46 respectively. Find the accepta	nd C ance	ladding angle f	g of For t	a sil he fil	ica ber.	fib	er are	e 1.	48	2,.	K2,0	CO1
3.	A fiber has an attenuation of 0.5dB power is initially launched into the 25km.	/km fiber	at 150 ;, estim	0nn ate	n.If (the).5n pov	nW ver	of o level	ptio af	cal ter	2,.	K1,(CO2
4.	What is polarization mode dispersion?	?									2,.	K1,0	CO2
5.	Find the peak emission wavelength of whose band gap energy is 0.7 eV.	of an	LED 1	mac	le fro	m	sem	nicono	luc	tor	2,.	K1,0	CO3
6.	Define external Quantum Efficiency.										2,.	K1,0	CO3
7.	Define BER.										2,.	K1,0	CO4
8.	Why do we prefer trans-impedar impedance preamplifier?	nce	pream	plifi	er r	athe	er	than	hi	gh	2,.	K1,0	CO4
9.	State the concept of WDM.										2,.	K1,0	CO5
10.	Define the basic signal rate of SONET	•									2,.	K1,0	CO5
	PART - R (5 x	/ 13 :	= 65 M	arl	(a)								

$PART - B (5 \times 13 = 65 Marks)$

Answer ALL Questions

11. a) A fiber has Core radius of $25\mu m$, core refractive index of 1.48 and ^{13,K2,CO1} relative index difference (Δ)is 0.01. If the operating wavelength is 0.84 μ m, find the values of normalized frequency and the number of guided modes. Determine the number of guided modes if Δ is reduced to 0.003.

OR

- b) Starting from Maxwell's equation, derive the expression of wave ^{13,K2,CO1} equation of an electromagnetic wave propagating through optical fiber.
- a) (i) Explain the factors contributing to attenuation in optical fiber. 7,K2,CO2
 (ii) Draw the graph for attenuation in optical fibers as a function of 6,K2,CO2 wavelength.

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 12179

OR

- b) Derive the expression for material dispersion and waveguide ^{13,K2,CO2} dispersion and explain them.
- 13. a) Draw and explain Fabry Perot resonator cavity for a laser diode. ^{13,K2,CO3} Derive laser diode rate equation.

OR

- b) Draw the structures of SLED and ELED and explain their principle of 13,K2,CO3 operation.
- 14. a) Compare the different types of noise affecting the performance of a 13, K2, CO4 photo detector and derive an expression for the signal to noise ratio.

OR

- b) (i) What are factors that decide the detector response time? Explain ^{8,K2,CO4} them in detail with necessary sketches.
 (ii) An APD generates a current of 100nA when the incident power is ^{5,K2,CO4} 5nW. The operating wavelength is 1.5 μm. Find its responsivity. If the quantum efficiency is 0.7, find the multiplication factor.
- 15. a) Explain in detail about various lensing schemes for coupling ^{13,K2,CO5} improvement.

OR

b) (i) Discuss with the aid of a suitable diagram the cut- back technique ^{7,K2,CO5} used for the measurement of the total attenuation in an optical fiber. Indicate the differences in the apparatus utilized for spectral loss and spot attenuation measurement.

(ii) A spot measurement of fiber attenuation is performed on a 1.5 km 6,K2,CO5 length of optical fiber at a wavelength of 1.1 µm. The measured optical output power from the 1.5 km length of fiber is 50.1 µW. When the fiber is cut back to a 2 m length, the measured optical power is 385.4 µW. Determine the attenuation per kilometer for the fiber at a wavelength of 1.1 µm.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the following requirements for the design of an optically ^{15,K3,CO6} amplified WDM link: (i) Link Band width (ii) Optical power requirements for a specific BER.

OR

b) Describe the rise-time budget in detail and Assume that LED together ^{15,K3,CO6} with drive circuit has a rise time of 15 ns. LED has a spectral width of 40 nm. We have a material dispersion related rise time degradation of 21 ns over the 6 km link. The rise time degradation from the receiver is 14 ns. The modal dispersion induced fiber rise time is 3.9 ns. Calculate link rise time.