		Reg. No.										
	Question Paper Code		13181									
			10		0.1			. . .				
	B.E. / B.Tech DEGREE EXAMINATIONS, NOV / DEC 2024											
	Seven	th Semester										
	Electronics and Com	munication	En	igine	eri	ng						
	20ECPC702 - OPTIC	AL COMM	UN	IICA	TI	ON						
	Regulat	ions - 2020										
Du	ration: 3 Hours								May	к. М	arks: 1	00
	PART - A (MCO)	$(20 \times 1 = 20)$	M	arks)						K	
	Answer AL	L Ouestions	, 1 . 1 .	ui Ko	,					Mari	ks Level	С0
1.	For which condition ray optic principles break d	own among	the	rela	tion	ship	betw	veen		1	K1	<i>CO1</i>
	wavelength (λ) and aperture size (d) given below	v:				1						
	(a) $d \ll \lambda$ (b) $d \gg \lambda$ (c)	$d >> \lambda$		(d) (<u>l</u> >λ						
2.	In a fiber, the refractive index of the core is twice	e that of the	e re	fract	ive	index	x of	clad	ding.	1	K2	COI
	Then, the critical angle is	0				-0						
2	(a) 25° (b) 30° (c)	35°		(d) 3	87°				1	V1	COL
3.	V- number for the single mode fiber is (1)	 		1.4	2	105				Ι	K1	COI
	(a) Less than or equal to 2.405 (b) Gr	eater than or $\frac{1}{2}$	eq	ualto	5 2.	405						
1	(c) Equal to 2.450 (d) Eq	ual to 2.405								1	K1	CO^2
4.	(a) Linear scattering (b)) Non-linea	r sc	atter	ina					1		002
	(c) Fiber bending losses (d) Core-clade	l se dinc		ing ses							
5.	If the input power 100µW launched into a 6Km	fiber. the me	ean	optic	cal 1	nowe	r at f	he f	iber	1	K2	<i>CO2</i>
	output is $2 \mu W$. What is the overall signal attenu	ation through	sh tł	ne fit	ber	assun	ning	ther	e			
	are no connectors or splicers?		,				0					
	(a) 15.23dB (b) 17.12dB (d)	c) 16.98dB			(d)	18.56	6dB					
6.	Variation of refractive index of the core material	as function	of	wave	eler	ngth c	ause	d		1	K1	<i>CO2</i>
	$\overline{(\cdot)}$ D -1- $\overline{(\cdot)}$ D -1- $\overline{(\cdot)}$	1.) M. 4	1:									
	(a) Polarization mode dispersion (b) Material dispersion (c) Wayaguida dispersion (d) Intermedial dispersion											
7	(c) waveguide dispersion (d) intermodal dispersion					1	K1	CO3				
1.	(a) Silicon (b) Silicon Carbide		sР			(d) (Ta A	5				
8.	A double hetero-structure is designed with the c	omposition	of tl	he au	iate	rnarv	allo	v.]	\ln_{1-x}	1	K2	CO3
	$Ga_x As_y P_{1-y}$ is such that $x/y=1/2.2$ and $x=0.4$. What is the operating wavelength of the											
	designed semiconductor device? Assume Eg(y)=	1.35-0.72y-	+0.1	$12y^2$	eV		U					
	(a) 1550nm (b) 1532nm	(c) 15201	nm			(d) 14	480r	m				
9.	is a non-coherent light source for optical	l communica	atio	n sys	sten	n.				1	K1	CO3
	(a) ILD (b) LED	(c) APD				(d) P	IN I	Diodo	e			~~ .
10.	Low impedance preamplifiers can operate over areceiver sensitivity.	a	ban	dwic	lth a	and d	o no	t pro	ovide	Ι	K2	CO4
	(a) wide, high (b) wide, low (c)) narrow, loy	W		()	d) nar	row	, hig	h			~~ .
11.	A digital fiber optic link operating at 850nm req	uires a mini	muı	m Bł	ER	of 10	·		1S	Ι	K2	CO4
	the required average photons per pulse. (2) 24	01				(1) 1	5					
10	(a) 24 (b) 18 (c)	21	N -	nd 41	ha	(d) l) 		~ ^ 0	1	KI	CO_{4}
12.	when the optical power incident on a photodi Λ/W the photocurrent concreted (in (ΛA)) is	ode is TUHV	v a	na ti	ne i	respo	11SIV	ity 19	s U.8	1	Π2	004
	A w, the photocurrent generated (in μ A) is(a) 10 μ A (b) 8 μ A (c)	<u>.</u>		(d) 1	8 11 4						
13	The range of BER for an ontical system is	25 μΑ		(u) 1	ο μΑ				1	K1	CO4
1.5.	(a) 10^{-9} to 10^{-12} (b) 10^{-3} to 10^{-12} (c)	$\overline{10}^{-12}$ to 10^{-1}	4	(0	ł) 1	0 ⁻⁶ to	10 ⁻¹	2				-

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 1

14.	What is the use of an index-matching material in the connector between the two jointed					
	(a) To decrease the light transmission through the connection					
	(b) To increase the light transmission through the connection					
	(c) To induce losses in the fiber					
	(d) To make a fiber dispersive					
15.	A permanent bond is referred as a	1	K1	<i>CO5</i>		
	(a) T-joint (b) Splice (c) Fiber jointing (d) Connections					
16.	The technique used for determining the refractive index profile can be used to measure the	1	K1	<i>CO5</i>		
	(a) Core Radius (b) Core Diameter (c) Cladding diameter (d) Wavelength					
17.	Which of the following is the equation used for calculating the minimum number of	1	K1	<i>CO6</i>		
	wavelengths required for a wavelength routed network?					
	(a) N=2L+C/ λ (b) N=L+C/ λ (c) N=L+C/2 λ (d) N=2(L+C)/ λ	_		~~ .		
18.	Assertion: Wavelength routed networks have a high data transmission rate.	1	K2	<i>CO</i> 6		
	Reasoning: In wavelength routed networks, data is transmitted through multiple channels					
	simultaneously.					
	(a) Both assertion and reasoning are true, but reasoning is not the correct explanation of					
	(b) Assertion is true, but reasoning is false					
	(c) Both assertion and reasoning are true and reasoning is the correct explanation of					
	assertion					
	(d) Assertion is false, but reasoning is true					
19.	When was the Gigabit Ethernet network developed?	1	K1	<i>CO6</i>		
	(a) 1977 (b) 1988 (c) 1990 (d) 2002					
20.	Which of the following is not an element of Broadcast and select WDM network?	1	Kl	<i>CO6</i>		
	(a) Amplifiers (b) Multiplexers (c) Modulators (d) Demultiplexers					
	PART - B (10 \times 2 = 20 Marks)					
	Answer ALL Questions					
21.	Distinguish meridional rays and skew rays.	2	K2	<i>CO1</i>		
22.	For n1=1.55 and n2=1.52, Calculate the Critical angle and Numerical Aperture.	2	K2	CO1		
23.	When the mean optical power launched into a 8 Km fiber is 120 µw, the mean optical	2	K2	<i>CO2</i>		
	power at the fiber output is 3 µw. Calculate the overall attenuation in dB by assuming					
	there are no splices.					
24.	What's Urbach's rule?	2	K1	<i>CO2</i>		
25.	Write two differences between LED and Laser diode.	2	Kl	CO3		
26.	Calculate the external differential quantum efficiency of a laser diode operating at	2	K2	СО3		
	1330nm. The slope of the straight line portion of the curve for the emitted optical power					
	P versus drive current I is given by 15 mW/mA.					
27.	What are the various error sources in the optical receiver?	2	Kl	<i>CO4</i>		
28.	Mention few fiber diameter measurement techniques.	2	K1	<i>CO5</i>		
29.	Distinguish between splicer and connector.	2	K2	<i>CO5</i>		
30.	List out the features of DWDM.	2	K1	<i>CO6</i>		

PART - C (6 × 10 = 60 Marks)

Answer ALL Questions

31. a) Explain ray theory transmission in an optical communication with neat diagram. 10 K2 CO1 Explain acceptance angle, numerical aperture and total internal reflection using Snell's law with relevant figures and calculations.

2

OR

K1 – Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create

13181

	b)	Starting from Maxwell's equation, derive the expression of wave equation of an electromagnetic wave propagating through optical fiber.	10	К2	CO1				
32.	a)	Suggest and validate the techniques employed and the fiber structures utilized to provide (i) Dispersion shifted single mode fibers (ii) Dispersion flattened single mode fibers.	5+5	K2	CO2				
OR									
	b)	Derive the expressions for material and waveguide dispersion and explain them.	10	K2	<i>CO2</i>				
33.	a)	With a neat sketch, discuss the structure and working principle of surface emitting LED and Edge emitting LED.	10	К2	СО3				
	UR								
	b)	Explain the working principle of laser diode and derive its rate equation.	10	K2	СО3				
34.	a)	Draw the structures of Pin and APD photo detectors and explain their operations.	10	K2	<i>CO</i> 4				
		UR							
	b)	Describe the terms: - Quantum limit and Probability of error with respect to a receiver with typical values.	10	K2	<i>CO4</i>				
35.	a)	Discuss with the aid of a suitable diagram the cut- back technique used for the measurement of the total attenuation in an optical fiber. Indicate the differences in the apparatus utilized for spectral loss and spot attenuation measurement. OR	10	K2	CO5				
	b)	Derive an expression for the power coupled into a step index fiber from an LED that has a radiant distribution of $B(\theta) = B0 \cos \theta$.	10	K2	CO5				
36.	a)	 An Engineer has the following components available: (a) GaAlAs laser diode, operating at 850nm, fiber coupled power 0dbm (b) Ten sections of cable each of which is 500m long, has 4dB/km attenuation has connectors at both ends (c) 2dB/connector connector loss (d) A PIN photodiode receiver, -45 dBm sensitivity (e) An avalanche photodiode receiver, -56dBm sensitivity The engineer wishes to construct a 5km link operating at 20 Mb/s. Estimate which receiver should be used if a 6dB operating margin is required. 	10	Κ3	<i>C06</i>				
	1 \		10	_V 2	COL				

b) Briefly explain the SONET frame structures and develop the SONET/SDH rings ¹⁰ ^{K3} ^{CO6} for wide area network with neat diagram.