100
co
<i>CO1</i>
<i>CO1</i>
COI
CO2
CO2
CO2
CO3
005
CO3
005
CO3
CO4
CO4
<i>CO4</i>
<i>CO5</i>

(d) To reinforce actions based on rewards

14.	14. Which of the following best describes Machine Learning?(a) Machine learning is a process where computers are explicitly programmed to perform tasks			
	(b) Machine learning is a subset of artificial intelligence that enables systems to learn from data and improve over time without being explicitly programmed(c) Machine learning only involves supervised learning techniques			
15.	(d) Machine learning only applies to classification problems Which of the following machine learning algorithms is commonly used for classification tasks?	1	K1	CO5
16.	 (a) Support Vector Machines (SVM) (b) K-Means Clustering (c) Principal Component Analysis (PCA) (d) Linear Regression In fraud detection in banking, which machine learning approach would most likely be used to identify unusual transaction patterns in a customer's account? 	9 1	K2	C05
	 (a) K-Means Clustering (Unsupervised Learning) (b) Linear Regression (Supervised Learning) (c) Decision Trees (Supervised Learning) (d) Q-Learning (Reinforcement Learning) 			
17.	Which of the following distributions is commonly used to model the number of successes in a fixed number of independent Bernoulli trials?	1	K1	<i>CO</i> 6
	(a) Poisson Distribution(b) Normal Distribution(c) Binomial Distribution(d) Exponential Distribution			
18.	The Poisson distribution is typically used to model which of the following?	1	K1	<i>CO</i> 6
	(a) The time between events in a process that occurs at a constant average rate(b) The number of successes in a fixed number of trials			
	(c) The heights of individuals in a population			
10	(d) The correlation between two variables	1	VI	C06
19.	In a one-sample t-test, the null hypothesis generally assumes that: (a) The population mean is greater than the sample mean	1	K1	000
	(b) The population mean is equal to the sample mean			
	(c) The sample variance is equal to the population variance			
20	(d) The sample mean is greater than the population mean Survival analysis is used to:	1	K1	C06
20.	(a) Model the probability of an event occurring over time			
	(b) Analyze how much time passes between two events			
	(c) Predict the distribution of continuous outcomes(d) Perform classification on survival data			
	(u) renomi classification on survival data			
	PART - B $(10 \times 2 = 20 \text{ Marks})$ Answer ALL Questions			
21.	Write an R program to add 3 to each element in a given vector. Print the original and new vector.	, 2	K2	<i>CO1</i>
22.	Study the following R codes a = 1:12	2	K2	<i>CO1</i>
	b = -13 : -24			
	A = matrix(a, ncol = 4, byrow = T) B = matrix(b, nrow = 3, byrow = F)			
	C = A + B			
	D = t(C)			
	E = A[2,4]+B[3,4]] F = cbind(A,B)			
	From the above codes write the value of A, B, C, D, E and F.			
	What is the output of seq(4) and seq(from=2, to=10, by =2)?	2	K2	<i>CO2</i>
24.	Write about next and break in R programming.	2	K2	CO2
K1 -	- Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate; K6 – Create 2		132	288

25. Distinguish between max() and pmax() functions.	2	K2 CO3
26. Describe the purpose of the steadyStates() function in the markovchain package in R.	2	K2 CO3
27. What functions are used to create graphics in R?	2	K1 CO4
28. State the important features of ggplt2 in R.	2	K1 CO4
29. Give the expression for the pdf of Normal distribution function.	2	K1 CO5
30. How is correlation and covariance done in R?	2	K2 CO6

PART - C $(6 \times 10 = 60 \text{ Marks})$

Answer ALL Questions

31. a) Compare and contrast the use of functions and scripts in R. How does the execution ¹⁰ ^{K2} ^{CO1} of a function differ from running a script, and when would you prefer one over the other?

OR

- b) Illustrate how to create a list and demonstrate all the ways of accessing a list 10 K2 CO1 component.
- 32. a) Explain with examples the different control statements in R. 10 K2 CO2

OR

- b) Write the R code to perform the Binary search of the data in a given vector. 10 K2 CO2
- 33. a) You need to sort a dataset with 1 million data points. You have the option of using ¹⁰ K³ CO³ R's sort() function or writing your own sorting algorithm (e.g., QuickSort or MergeSort). Write an R code to perform the Quicksort and comment on the two sorting techniques.

OR

110	the and k program to generate the datamane and read and write the datamane.					
	S.No	S.No Name Department No. of Winning Project		No. of Winning Project	Prize Amount	
	1	А	ECE	7	Rs.25000	
	2	В	AI&DS	3	Rs.6000	
	3	С	CSE	8	Rs.36000	
	4	D	IT	2	Rs.4000	
	5	E	ECE	5	Rs.12000	
	6	F	AI&DS	5	Rs.10000	

b) Write an R program to generate the dataframe and read and write the dataframe.

34. a) A researcher is examining the iris dataset to understand how different species of iris ¹⁰ ^{K2} ^{CO4} flowers vary in petal length and petal width. Using Lattice Graphics in R, write code to create a scatter plot showing the relationship between Petal Length and Petal Width, with separate panels for each species (Species). Customize your plot to include titles for each panel indicating the species name, and add meaningful axis labels.

Id	Sepal Length	Sepal Width	Petal Length	Petal Width	Species	
Iu	in Cm	in Cm	in Cm	in Cm	species	
1	5.1	3.5	1.4	0.2	Iris-setosa	
2	4.9	3.0	1.4	0.2	Iris-setosa	
3	4.7	3.2	1.3	0.2	Iris-setosa	
4	4.6	3.1	1.5	0.2	Iris-setosa	
5	5.0	3.6	1.4	0.2	Iris-setosa	

OR

3

K3 CO3

10

- b) With the data set of your own choice generate the Pie chart and Histogram plot using ¹⁰ K² CO⁴ ggplot2. Apply the different variations that can be done in the plots.
- 35. a) Explain in detail what happens during the model training process in supervised ¹⁰ K2 CO5 learning. Write an R code to perform the prediction of the species using Iris data set.

OR

- b) Discuss briefly about the key components of a reinforcement learning problem. How 10 K2 CO5 do these components relate to an agent's decision-making process in a typical reinforcement learning task in R?
- 36. a) Differentiate between T test and ANOVA test. Apply the hypothetical testing using ¹⁰ K³ CO6 T test and write the R code for the same.

OR

b) Using the different functions generate the density and cumulative distribution for the 10 K3 CO6 Binomial and Poisson distribution function.