Reg. No.													
----------	--	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code 12374

B.E. / B.Tech. - DEGREE EXAMINATIONS, NOV / DEC 2023

Fourth Semester

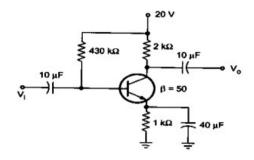
Electronics and Communication Engineering 20ECPW401 - ELECTRONIC CIRCUITS WITH LABORATORY

(Regulations 2020)

Duration: 3 Hours Max. Marks: 100

$PART - A (10 \times 2 = 20 Marks)$

Answer ALL Questions


1.	List out the various biasing methods.						
2.	List the two techniques used in the stability of the Q point.						
3.	Compare cascade and cascode amplifier.						
4.	Categorize the different coupling schemes used in multistage amplifiers.						
5.	State the advantages of negative feedback						
6.	6. A Wein bridge oscillator has feedback network with capacitance of 10μ F and resistance of $5 \text{ k}\Omega$.find the frequency of oscillation.						
7.	What is meant by Tuned amplifier?						
8.	List out some advantages of double tuned amplifier.						
9.	9. State the differences between voltage and power amplifier.						
10.	10. What is meant by complementary symmetry push pull amplifier						
PART - B $(5 \times 13 = 65 \text{ Marks})$ Answer ALL Questions							
11.	a) (i) What is DC load line? How will you select the operating point explain it using common emitter amplifier characteristics as an example?						
	(ii) Design a fixed bias circuit to have operating point of (10V,3mA). The circuit is supplied with 20V and uses a silicon transistor of hfe						

OR

- b) (i) Find the stability factor for voltage divider bias circuit and give 8,K2,CO1 reason why it is advantageous than fixed bias circuit.
 - (ii) Determine I_B, I_C, V_{CE}, V_C, V_B, V_E and V_{BC} For the emitter bias ^{5,K3,CO1} network shown below.

Marks, K-Level, CO

250.

12. a) Explain the basic common base amplifier circuit and derive the ^{13,K2,CO2} expressions for its small signal voltage gain, current gain, input impedance and output impedance.

OR

- b) Illustrate the expressions for Ri, Av and Ro for emitter follower 13,K2,CO2 amplifier.
- 13. a) (i) What are the different topologies of negative feedback amplifier 3,K2,CO3 (ii) With a neat diagram, derive the expression of R_{if}, R_{of},A_v, and A_{vf} of 10,K2,CO3 the Voltage series feedback amplifier.

OR

- b) (i) State the advantages of Crystal oscillator
 3,K2,C03
 (ii) Derive the expression for condition for oscillation and frequency of oscillation of RC phase shift oscillator
- 14. a) (i) List out need for neutralization in tuned amplifiers.

 (ii) Obtain the bandwidth of a n-stage cascaded identical single tuned amplifiers in terms of the bandwidth of a single stage tuned amplifier.

 3,K2,CO4
 amplifiers in terms of the bandwidth of a single stage tuned amplifier.

OR

- b) Describe and derive the equations for the Small signal tuned amplifier with necessary derivations.

 13,K2,CO4
- 15. a) Examine the circuit operation and output resistance of class AB power amplifiers.

OR

b) Summarize the transfer characteristic, signal waveforms, power ^{13,K2,CO6} dissipation, power conversion efficiency of Class A amplifier.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Explain the working principle of Bistable multivibrator with neat 15,K2,CO5 diagrams.

OR

b) Describe how Schmitt trigger circuit can be evolved from bistable 15,K2,CO5 circuit.