			Reg. No.							
		Question Paper Code	12674	4						
	B.E. / B.Tech DEGREE EXAMINATIONS, APRIL / MAY 2024									
Fourth Semester										
Electronics and Communication Engineering										
20ECPW401 - ELECTRONIC CIRCUITS WITH LABORATORY										
		Regulations	- 2020							
Duration: 3 Hours Max. N					. Marks	Marks: 100				
PART - A (10 × 2 = 20 Marks) Answer ALL Ouestions					Mark	Marks $\frac{K}{Level}$ CO				
1.	Why is the operating point selected at the Centre of the active region?						K2	COI		
2.	Predict the collector and base current for the given specifications $h_{fe} = 80$, $V_{BE(ON)} = 0.7V$, $R_c = 5 K$, $R_b = 10 K$, $V_{cc} = 5 V$.					2	K1	<i>CO1</i>		
3.	Infer why CE amplifiers are better than CC & CB amplifiers.						K1	<i>CO2</i>	1	
4.	Trace the small signal equivalent circuit of Common base amplifier using parameter model.					g h 2	K2	<i>CO2</i>		
5.	State Barkhausen Criterion for oscillation.						K1	CO3		
6.	The feedback amplifier of an open loop gain 600 and Feedback Factor β =0.01.Find the Closed loop gain.						K2	СО3	1	
7.	Summarize the effect of cascading n stages of identical single tune amplifiers on bandwidth.					ned ²	К2	<i>CO4</i>	1	
8.	Infer the need for neutralization in tuned amplifier.					2	K2	<i>CO4</i>	!	
9.	Differentiate between the voltage and power amplifier.					2	K2	<i>CO6</i>	i	
10.	List out the performa	nce measures of power a	amplifiers.			2	K1	<i>CO6</i>	í	
		PART - B (5 × 13 =	65 Marks)							

Answer ALL Questions

11. a) Construct a voltage divider bias circuit and derive its stability factor and ¹³ K³ CO1 also give reasons why it is advantageous than fixed bias circuit.

OR

- b) Trace the DC load line of emitter biasing circuit and give the ¹³ K² CO1 relationship between S, S' and S''.
- 12. a) Draw the Common emitter amplifier and derive expressions for voltage ¹³ K² CO² gain, current gain, input impedance, and output impedance using h parameter model.

OR

b) Explain the emitter coupled differential amplifier with neat diagram & 13 K2 CO2 Derive expression for CMRR.

1

12674

13. a) Derive the expression for frequency of oscillations for RC phase shift ¹³ K2 CO3 Oscillator.

OR

- b) Design a Colpitts oscillator with capacitance $C_1 = 100 \text{ pF}$ and $C_2 = 7500$ ¹³ K3 CO3 pF.The inductance is variable. Determine the range of inductance values, if the frequency of oscillation is to vary between 950 kHz and 2050 kHz.
- 14. a) Explain capacitance coupled single tuned amplifier circuit and derive ¹³ K³ CO⁴ the expressions for its important parameters.

OR

- b) Illustrate the stability of tuned amplifiers and mention the need of 13 K2 CO4 neutralization.
- 15. a) Describe the transfer characteristic, signal waveforms, power ¹³ K² CO6 dissipation, and power conversion efficiency of Class A amplifiers.

OR

b) Explain the working of Class B Push pull amplifiers with neat diagrams. ¹³ K2 CO6 Also derive its efficiency.

PART - C $(1 \times 15 = 15 \text{ Marks})$

16. a) Illustrate the function of emitter coupled monostable Multivibrator and ¹⁵ K2 CO5 triggering methods for monostable multivibrator,

OR

b) Illustrate the triggering methods for a bistable multivibrator and explain ¹⁵ K² CO³ it by necessary diagrams.